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Abstract

In this paper the problem of retrospective change-point detection and esti-

mation in multivariate linear models is considered. The lower bounds for the

error of change-point estimation are proved in different cases (one change-point:

deterministic and stochastic predictors, multiple change-points). A new method

for retrospective change-point detection and estimation is proposed and its main

performance characteristics (type 1 and type 2 errors, the error of estimation) are

studied for dependent observations in situations of deterministic and stochastic

predictors and unknown change-points. We prove that this method is asymptot-

ically optimal by the order of convergence of change-point estimates to their true

values as the sample size tends to infinity. Results of a simulation study of the

main performance characteristics of proposed method in comparison with other

well known methods of retrospective change-point detection and estimation are

presented.

Keywords: change-point; retrospective detection and estimation; performance
measure; asymptotic optimality

1 Introduction

This paper deals with change-point problems for multivariate linear models. We begin
with a short review of this field.

The change-point problem for regression models was first considered by Quandt
(1958, 1960). Using econometric examples Quandt proposed a method for estimation
of a change-point in a sequence of independent observations based upon the likelihood
ratio test.
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Let us describe the change-point problem for the linear regression models considered
in the literature. Let y1, y2, . . . , yn be independent random variables (i.r.v.’s). Under
the null hypothesis H0 the linear model is

yi = x∗
iβ + εi, 1 ≤ i ≤ n,

where β = (β1, β2, . . . , βd)
∗ is an unknown vector of coefficients, x∗

i = (1, x2i,

. . . , xdi) are known predictors (here and below ∗ is the transposition symbol).
The errors εi are supposed to be independent identically distributed random vari-

ables (i.i.d.r.v.’s) with Eεi = 0, 0 < σ2 = var εi <∞.

Under the alternative hypothesis H1 a change at the instant k∗ occurs, i.e.

yi =

{
x∗
iβ + εi, 1 ≤ i ≤ k∗

x∗
i γ + εi, k∗ < i ≤ n,

where k∗ and γ ∈ R
d are unknown parameters, and β �= γ.

Denote
ȳk =

1

k

∑
1≤i≤k

yi, x̄k =
1

k

∑
1≤i≤k

xi,

Qn =
∑

1≤i≤n

(xi − x̄n)(xi − x̄n)
∗

and Xn = (x1,x2, . . . ,xn)
∗, Yn = (y1, y2, . . . , yn)

∗.
The least square estimate of β is:

β̂n = (X∗
nXn)

−1 X∗
nYn.

Siegmund with co-authours (James, James, Siegmund (1989)) proposed to reject
H0 for the large values of max

1≤k≤n
|Un(k)|, where

Un(k) = (
k

1− k/n
)1/2

ȳk − ȳn − β̂n(x̄k − x̄n)
∗

(1− k(x̄k − x̄n)(x̄k − x̄n)∗/(Qn(1− k/n)))1/2
.

Earlier, Brown, Durbin, and Evans (1975) used the cumulative sums of regression
residuals ∑

1≤i≤k

(yi − ȳn − β̂n(xi − x̄n)
∗), 1 ≤ k ≤ n.

It is easy to see that

Un(k) = wn(k)Rn(k)

Rn(k) = (
n

k(n− k)
)1/2

∑
1≤i≤k

(yi − ȳn − β̂n(xi − x̄n)
∗)

wn(k) = 1− k(x̄k − x̄n)(x̄k − x̄n)
∗/(Qn(1− k/n)))−1/2.
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The functionals of Un(k) and Rn(k) were used as the test statistics for detection of
change-points in regression relashionships.

Kim and Siegmund (1989) obtained the limit distribution of max
1≤k<n

|Un(k)|. Alterna-

tively, Maronna and Yohay (1978), and Worsley (1986) used the maximum likelihood
method for testing H0 against H1 for Gaussian errors. Later Gombay and Horvath
(1994) studied the limit distributions of statistics Zn(i, j) = max

i≤k<j
|Un(k)|, Tn(i, j) =

max
i≤k<j

|Rn(k)| for deterministic and stochastic regression plans. The monograph by

Csorgo and Horvath (1997) puts together various results in detection of structural
changes in regression models.

Besides change-point detection problems, results in change-point estimation for
regressions are of especial practical importance. This theme is considered in papers by
Darkhovsky (1995), Huskova (1996), Horvath, Huskova, and Serbinovska (1997). In
two last papers the asymptotical characteristics of change-point estimates based upon
the maximum likelihood statistics are studied. For the case of contiguous alternatives,
the limit distribution of the change-point estimates is obtained and weak and strong
consistency of these estimates is proved. The paper by Darkhovsky (1995) develops
the nonparametric approach to retrospective change-point estimation. Here the limit
characteristics of change-point estimates in the functional regression model are studied
without the contiguity assumption, and the rate of convergence of these estimates to
the ’true’ change-point parameters is estimated. Some generalizations of these results
can be found in the monograph by Brodsky and Darkhovsky (2000).

A new wave of research interest to change-point problems in regressions was formed
in 2000s. Different generalizations to change-point problems for autoregressive time se-
ries (Huskova, Praskova, Steinebach (2007, 2008), Gombay (2008)), for multiple change-
point estimation in non-stationary time series (Davis, Lee, Rodriguez-Yam (2006)), for
testing change-points in covariance structure of linear processes (Berkes, Gombay, Hor-
vath (2009)) were studied.

However, as a result we see the multitude of methods proposed for solving different
change-point problems in linear relationships and almost no theoretical approaches to
their comparative analysis. We cannot even estimate the asymptotic efficiency of these
methods. All that is empirically observed for ’structural breaks’ tests in statistics and
econometrics can be reduced to the following ’vague’ statement: the power of these
methods is rather low. Let us agree that this ’practical conclusion’ requires a more
serious verification.
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In this paper, we pursue the following main goals:
1) To prove the prior theoretical lower bounds for the error probability in change-

point estimation in multivariate models. These bounds provide the theoretical basis
for the proofs of the asymptotic optimality of change-point estimates and for the com-
parative analysis of these estimates;

2) To propose a new nonparametric method for the problem of retrospective change-
point detection and estimation in multivariate linear systems. Then we study the main
performance characteristics of this method: type 1 and type 2 errors, the error of
change-point estimation.

3) For the problem of multiple change-point detection and estimation, to propose a
general statement in which both the number of change-points and their coordinates in
the sample are unknown. For this problem statement, to propose a new asymptotically
optimal method which gives consistent estimates of an unknown number of change-
points and their coordinates.

The structure of this paper is as follows. In Section 2 the general change-point
problem for multivariate linear systems is formulated and general assumptions are
given. In Section 3 we prove the prior informational inequalities for the main perfor-
mance characteristic of the retrospective change-point problem, namely, the error of
change-point estimation. The lower bounds for the error of estimation are found in
different situations of change-point detection (deterministic and stochastic regression
plan, multiple change-points). In Section 4 we propose a new method for the retrospec-
tive change-point detection and estimation in multivariate linear models and study its
main performance characteristics (type 1 and type 2 errors, the error of estimation) in
different situations of change-point detection and estimation (dependent observations,
deterministic and stochastic regression plan, multiple change-points). We prove that
this method is asymptotically optimal by the order of convergence of change-point esti-
mates to their true values as the sample size tends to infinity. In Section 5 a variant of
the functional limit theorem in the case of absence of change-points is given. In Section
6 a simulation study of characteristics of the proposed method for finite sample sizes is
performed. The main goals of this study are as follows: to compare performance char-
acteristics of the proposed method with characteristics of other well known methods
of change-point detection in linear regression models, to consider more general multi-
variate linear models and performance characteristics of the proposed method in these
multivariate models. Section 7 contains main conclusions.
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2 Problem statement and general assumptions

2.1 General model

The following basic specification of the multivariate system with structural changes is
considered:

Y(n) = ΠX(n) + νn, n = 1, . . . , N (1)

where Y(n) = (y1n, . . . , yMn)
∗ is the vector of endogenous variables, X(n) = (x1n, . . . , xKn)

∗

is the vector of pre-determined variables, Π is M ×K matrix, νn = (ν1n, . . . , νMn)
∗ is

the vector of random errors.
The matrix Π = Π(ϑ, n), ϑ = (θ1, . . . , θk) can change abruptly at some unknown

change-points mi = [θiN ], i = 1, . . . , k (here and below [a] denote the integer part of
number a), i.e.,

Π(ϑ, n) =
k+1∑
i=1

ai I([θi−1N ] < n ≤ [θiN ]),

where θi are unknown change-point parameters such that 0 ≡ θ0 < θ1 < . . . θk <

θk+1 ≡ 1, ai �= ai+1, i = 1, . . . , k are unknown matrices (here and below I(A) is the
indicator of the set A).

The problem is to estimate the unknown parameters θi (and therefore, the change-
points mi) by observations Y(i),X(i), i = 1, . . . , N (the case θi ≡ 1, i = 1, . . . , k

corresponds to the model without change-points).
Therefore, first, we need to test an obtained dataset of observations for the presence

of change-points. Second, in the case of a rejected stationarity hypothesis, we wish to
estimate all detected change-points.

Model (1) generalizes many widely used regression models, namely:
a)autoregression model (AR)

yn = c0 + c1yn−1 + · · ·+ cmyn−m + νn,

Here X(n) = (1, yn−1, . . . , yn−m)
∗, Π = (c0, c1, . . . , cm).

b)autorgression-moving average (ARMA) model

yn = c1yn−1 + · · ·+ ckyn−k + d1un−∆ + · · ·+ dmun−∆−m + νn,

where un is the input variable, yn is the output variable at the instant n, ∆ is the delay
time. Here X(n) = (yn−1, . . . , yn−m, un−∆, . . . , un−∆−m)

∗, Π = (c1, . . . , ck, d1, . . . , dm).
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c)multi-factor regression model

yn = c1yn−1 + · · ·+ ckyn−m +
r∑

i=1

li∑
j=1

dijxi(n− j) + νn,

where r,m, li ≥ 1. Here X(n) = (yn−1, . . . , yn−m, x1(n − 1), . . . , x1(n − l1), x2(n −
1), . . . , x2(n− l2), . . . , xr(n− 1), . . . , xr(n− lr))

∗, Π = (c1, . . . , ck, d11,

. . . , drlr).
d)simultaneous equation systems (SES)

BY(n) + ΓX(n) = εn,

where Y(n) = (y1n, y2n, . . . , yMn)
∗ is the vector of endogenous variables, X(n) =

(x1n, x2n, . . . , xKn)
∗ is the vector of pre-determined variables (all exogenous variables

plus lagged endogenous variables), εn = (ε1n, ε2n, . . . , εMn)
∗ is the vector of random

errors, B is a M ×M non-degenerate matrix (detB �= 0), Γ is a M ×K matrix.
This general structural form of the SES can be written in the following reduced

form:
Y(n) = −B−1 ΓX(n) +B−1εn = ΠX(n) + νn

This system is usually used for the analysis of change-points (structural changes)
in multivariate linear models (see, e.g., Bai, Lumsdaine, Stock (1998)).

2.2 General assumptions

In this subsection we formulate general assumptions which will be used in our main
theorems 3-5. Some specific assumptions will be formulated together with the corre-
sponding theorems.

Let us start from the following definitions. Consider the probability space (Ω,F,P).
Let H1 and H2 be two σ-algebras from F. Consider the following measure of dependence
between H1 and H2:

ψ(H1,H2) = sup
A∈H1,B∈H2,P(A)P(B) �=0

∣∣∣ P(AB)

P(A)P(B)
− 1
∣∣∣

Suppose (Xi, i ≥ 1) is a sequence of random vectors defined on (Ω,F,P). Denote
by Ft

s = σ{Xi : s ≤ i ≤ t}, 1 ≤ s ≤ t <∞ the minimal σ-algebra generated by random
vectors Xi, s ≤ i ≤ t. Define

ψ(n) = sup
t≥1

ψ(Ft
1,F

∞
t+n)
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A) Mixing condition
We say that scalar random sequence {xn} satisfies the ψ-mixing condition if the

function ψ(n) (which is also called the ψ-mixing coefficient) tends to zero as n goes to
infinity.

We say that vector random sequence {X(n)}, X(n) = (x1(n), . . . , xk(n))
∗ satisfies

the uniform ψ-mixing condition if max
i,j

ψij(n) tends to zero as n goes to infinity, where

ψij(n) is the ψ-mixing coefficient for the sequence {xi(n)xj(n)}.
The ψ-mixing condition is satisfied in most practical situations of change-point

detection. In particular, for a Markov chain (not necessarily stationary), if ψ(n) < 1

for a certain n, then ψ(k) goes to zero at least exponentially as k → ∞ (see Bradley,
2005, theorem 3.3).

B) Cramer condition
Let {ζ(n)}, ζ(n) = (ζ1(n), . . . , ζk(n))

∗ be a vector random sequence. We say that
the uniform Cramer condition is satisfied if there exists a constant L > 0 such that

sup
n

E exp (tζi(n)ζj(n)) <∞

for every i, j = 1, . . . , k and |t| < L.
For a centered random sequence ξn this condition is equivalent to the following:

there exist constants g > 0, T > 0 such that for each |t| < T :

sup
n

Eetξn ≤ exp

(
t2g

2

)
.

3 Preliminary results: prior inequalities

3.1 Unique change-point

On a probability space (Ω,F ,Pθ) consider a sequence of i.r.v.’s x1, . . . , xN with the
following density function (w.r.t. some σ-finite measure µ)

f(xn) =

{
f0(xn, n/N), 1 ≤ n ≤ [θN ],

f1(xn, n/N), [θN ] < n ≤ N.
(2)

Here 0 < θ < 1 is an unknown change-point parameter.
Define the following objects:

TN(∆) : RN −→ ∆ ⊂ R
1 (3)
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is the Borel function on R
N with the values in the set ∆;

MN(∆) = {TN(∆)} (4)

is the collection of all Borel functions TN .

Theorem 1. Suppose the following assumption is satisfied:

the functions J0(t)
def
= E0 ln

f0(x, t)

f1(x, t)
and J1(t)

def
= E1 ln

f1(x, t)

f0(x, t)
are continuous at

[0, 1] and such that
J0(t) ≥ δ > 0, J1(t) ≥ δ > 0.

Then for any fixed 0 < θ < 1, 0 < ε < θ ∧ (1− θ) the following inequality holds:

lim inf
N→∞

N−1 ln inf
θ̂N∈MN ((0,1))

Pθ{|θ̂N − θ| > ε} ≥ −min


 θ+ε∫

θ

J0(t)dt,

θ∫
θ−ε

J1(t)dt


 .

Remark 1. The lower bound in Theorem 1 can not be improved essentially. It follows
from the results of Korostelev (1997). In this work the exact lower bound for the change-
point estimate in continuous time model for the Wiener process was given. The exact
lower bound in Korostelev (1997) differs from our bound only by a constant factor.

Consider the following particular cases of model (2).

1. A break in the trend function φ(t) of the mathematical expectation of Gaussian
observations

Let
f0(x, t) = h(x) exp (φ0(t)x− φ2

0(t)/2) , t ≤ θ

f1(x, t) = h(x) exp (φ1(t)x− φ2
1(t)/2) , t > θ,

where h(x) =
1√
2π

exp(−x2/2), φ0(·) �= φ1(·).
In this case from Theorem 1 we obtain the following lower bound for the error

probability:

Pθ{|θ̂N − θ| > ε} ≥ (1− o(1))·

· exp


−N

2
min
( θ+ε∫

θ

(φ0(t)− φ1(t))
2dt,

θ∫
θ−ε

(φ0(t)− φ1(t))
2 dt
) .

2. Linear regression with deterministic predictors and Gaussian errors
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Let
yn = c1(n)x1n + · · ·+ ck(n)xkn + ξn, n = 1, . . . , N, (5)

where {ξn} is a sequence of independent Gaussian r.v.’s with zero mean, ξn ∼ N (0, σ2),

c(n)
def
= (c1(n), . . . , ck(n))

∗ = aI(n ≤ [θN ]) + bI(n > [θN ]), a = (a1, . . . , ak)
∗ �=

b = (b1, . . . , bk)
∗, xin = fi(n/N), n = 1, . . . , N , and fi(·) ∈ C[0, 1], i = 1, . . . , k.

In this case from Theorem 1 applied to the sequence of observations y1, . . . , yN we
obtain:

Pθ{|θ̂N − θ| > ε} ≥ (1− o(1))·

· exp


− N

2σ2
min
( θ+ε∫

θ

(
k∑

i=1

fi(t)(ai − bi))
2dt,

θ∫
θ−ε

(
k∑

i=1

fi(t)(ai − bi))
2dt
) .

3. Linear stochastic regression model with Gaussian predictors
Consider model (5) with ξn ≡ 0. Suppose that there exist continuous functions

fi(·), σi(·), i = 1, . . . , k such that xin are Gaussian i.r.v.’s, xin ∼ N (fi(n/N), σ2
i (n/N)) ,

n = 1, . . . , N . Suppose also that xin and xjn are independent for i �= j and c(n) is the
same as in model (5).

Then from Theorem 1 we obtain:

Pθ{|θ̂N − θ| > ε} ≥ (1− o(1)) exp


−N

2
min
( θ+ε∫

θ

J0(t)dt,

θ∫
θ−ε

J1(t)dt
) ,

where

J0(t) =

(
φ0(t)

∆0(t)
− φ1(t)

∆1(t)

)2

+ 2
φ0(t)

∆0(t)

φ1(t)

∆1(t)

(
1− ∆0(t)

∆1(t)

)
+

2 ln
∆1(t)

∆0(t)
+

(
1 +

φ2
0(t)

∆2
0(t)

)(
∆0(t)

∆1(t)
− 1

)
,

and
φ0(t) = a1f1(t) + · · ·+ akfk(t), ∆

2
0(t) = a21σ

2
1(t) + · · ·+ a2kσ

2
k(t),

φ1(t) = b1f1(t) + · · ·+ bkfk(t), ∆
2
1(t) = b21σ

2
1(t) + · · ·+ b2kσ

2
k(t).

3.2 Multiple change-points

Theorem 1 can be generalized to the case of several change-points in the sequence of
independent r.v.’s with the following density function:

f(xn) = fi(xn, n/N) I([θi−1N ] < n ≤ [θiN ]), n = 1, . . . , N,
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where i = 1, . . . , k + 1 and 0 ≡ θ0 < θ1 < · · · < θk < θk+1 ≡ 1.
Suppose the following assumptions are satisfied:
i) change-points θi are such that min

1≤i≤k+1
(θi − θi−1) ≥ δ > 0.

ii) the functions Ji(t) = Ei ln
fi(x, t)

fi−1(x, t)
and J i−1(t) = Ei−1 ln

fi−1(x, t)

fi(x, t)
, i = 1, . . . , k

are continuous at [0, 1] and such that

Ji(t) ≥ ∆ > 0, i = 1, . . . , k

For the multiple change-point problem we estimate both the number k and the
vector ϑ def

= (θ1, . . . , θk) of change-points’ coordinates. Let s∗ def
= [1/δ] and denote

Q = {1, 2, . . . , s∗}.
For any s ∈ Q define

Ds = {x ∈ R
s : δ ≤ xi ≤ 1− δ, xi+1 − xi ≥ δ, x0 ≡ 0, xs+1 ≡ 1}

D� =
⋃s�

i=1 Di,D� ⊂ R
s� ≡ R

�
(6)

By the construction, an unknown vector ϑ is an arbitrary point of the set Dk and an
unknown number of the change-points k is an arbitrary point of the set Q.

As before, it is reasonable to consider objects (3)-(4). In this notation MN(D∗)

is the set of all arbitrary estimates of the parameter ϑ and MN(Q) is the set of all
arbitrary estimates of the parameter k on the basis of observations with the sample
size N .

Let k̂ ∈ MN(Q) is an estimate of an unknown number of change-points k and
ϑ̂ ∈ MN(Dk) is an estimate of unknown change-point coordinates on condition that
the number of the coordinates was estimated correctly.

Theorem 2. Suppose assumptions i) and ii) are satisfied. Then for any fixed 0 < ε < δ

the following inequality holds:

lim infN→∞N−1 ln inf
ϑ̂∈MN (Dk)

inf
k̂∈MN (Q)

sup
ϑ∈Dk

sup
k∈Q

Pθ{{k̂ �= k} ∪ {(k̂ = k)∩

∩(max
1≤i≤k

|θ̂i − θi| > ε)} ≥ − min
1≤i≤k

min(
θi+ε∫
θi

J i−1(τ)dτ,
θi∫

θi−ε

Ji(τ)dτ).

4 Main results

Now consider model (1). In this Section we assume that the uniform mixing condition
(A) and the uniform Cramer condition (B) (see Section 2) are satisfied, and an unknown
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vector of change-point parameters ϑ = (θ1, . . . , θk) is such that 0 < β ≤ θ1 < θ2 <

· · · < θk ≤ α < 1, where β, α are known numbers. Everywhere below the measure Pϑ

corresponds to a sample with the change-point ϑ (P0 corresponds to a sample without
change-points).

4.1 Unique change-point

In this subsection model (1) with unique change-point 0 < β ≤ θ ≤ α < 1 is considered.

4.1.1 Deterministic predictors

Let us formulate assumptions for model (1) in the case of a unique change-point (remind
that in model (1) the vector X(n) has the dimension K and the vector Y(n) has the
dimension M):

a) the vector random sequence {νn} satisfies conditions (A) and (B) (see section 2).
b) there exist functions fi(·) ∈ C[0, 1], i = 1, . . . , K such that xin = fi(n/N), n =

1, . . . , N .
Denote F (t) = (f1(t), . . . , fK(t))

∗ , t ∈ [0, 1].
c) for arbitrary 0 ≤ t1 < t2 ≤ 1, the matrix

A(t1, t2)
def
=

∫ t2

t1

F (s)F ∗(s)ds

is positive definite (below we denote A(t) def
= A(0, t), A(1)

def
= I).

In virtue of our assumptions, the matrix I is symmetric and positive definite.
Define K ×M matrix

Z(n1, n2) =

n2∑
i=n1

F (i/N)Y∗(i)

and K ×K matrix

Pn2
n1

def
=

n2∑
k=n1

F (k/N)F ∗(k/N), 1 ≤ n1 < n2 ≤ N.

The following matrix statistic is used for estimation of an unknown change-point:

ZN(n) = N−1
(
Z(1, n)− Pn

1 (PN
1 )−1 Z(1, N)

)
. (7)
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An arbitrary point n̂ of the set arg max
[βN ]≤n≤[αN ]

‖ZN(n)‖2 is assumed to be the esti-

mate of an unknown change-point (here and below ‖C‖ denotes the Gilbert norm of a
quadratic matrix C, namely ‖C‖ =

√
tr(CC∗)).

We define also the value θ̂N = n̂/N - the estimate of the change-point parameter θ.
Denote B def

= B(θ) = (E − I−1A(θ)) (a− b)∗.

Theorem 3. Suppose assumptions a)–c) are satisfied and rank(B) =M if θ ∈ [β, α].
Then the estimate θ̂N converges to the change-point parameter θ Pθ-almost surely

as N → ∞.
Besides, for any fixed (α − β) > ε > 0 the following inequality is satisfied for

N > N0(F ):

sup
β≤θ≤α

Pθ{|θ̂N − θ| > ε} ≤ m0 (C(ε,N)/R)




exp


−

Nβ
(
C(ε,N)/R

)2
4gm0 (C(ε,N)/R)


 ,

if C(ε,N) ≤ RgT

exp


−

TNβ
(
C(ε,N)/R

)
4m0 (C(ε,N)/R)


 ,

if C(ε,N) > RgT.

(8)

where the constants g, T, m0(·) ≥ 1 are taken from the uniform Cramer’s and ψ-

mixing conditions, respectively, C(ε,N) = [
ελF

4M‖a− b‖2 −L
F
/N
]
, N0(F ), λF , LF , R

are constants which can be exactly calculated for any given family of functions F (t),
and the constant M is given in the proof.

Remark 2. The assumption rankB = M yields K ≥ M , i.e., the number M of
endogenous variables in (1) cannot exceed the number K of pre-determined variables.
Note that for one regression equation this assumption is always satisfied.

Remark 3. For independent random errors m0(ε) = 1.

Remark 4. Comparing theorems 1 and 3, we conclude that the order of convergence of
the proposed estimate of the change-point parameter to its true value is asymptotically
optimal as N → ∞.

Remark 5. For any given family of functions F (t) one can calculate the function
f(t) = ‖m(t)‖2, m(t) = lim

N→∞
EθZN([Nt]) (see the proof) and investigate this function

on the square (θ, t) ∈ [β, α]×[β, α]. Such investigation gives the opportunity to calculate
all constants from the formulation.
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From the proof we obtain the following

Corollary 1. Let C > 0 be the decision threshold and C
def
= C − LF

N
. Then:

- for type 1 error the following inequality is satisfied:

P0{ max
[βN ]≤n≤[αN ]

‖ZN(n)‖2 > C} ≤ m0 (C/R)




exp

(
− TNCβ

4Rm0 (C/R)

)
,

if C > RgT

exp

(
− NβC2

4R2gm0 (C/R))

)
,

if C ≤ RgT,

(9)

- for type 2 error the following inequality is satisfied:

Pθ{ max
[βN ]≤n≤[αN ]

‖ZN(n)‖2 ≤ C} ≤ m0(d)




exp

(
− TNβd

4m0(d)

)
, d > gT

exp

(
− Nβd2

4gm0(d)

)
, d ≤ gT,

where d = R−1

(
‖m(θ)‖ − C − LF

N

)
> 0, ‖m(θ)‖2 = tr(B∗A2(θ)B).

4.1.2 Stochastic predictors

In this subsection we suppose that predictors xji in (1) are random. On the probability
space (Ω,F ,Pθ) consider filtration {Fn}, n = 1, . . . , n, where {Fn} ∈ F , Fn can be
interpreted as all available information up to the instant n.

Put X(n)
def
= (x1n, . . . , xKn)

∗.
Suppose that the following conditions are satisfied:
a) there exists a continuous symmetric matrix function V (t), t ∈ [0, 1] such that

the matrix
t2∫
t1

V (s)ds is positive definite for any 0 ≤ t1 < t2 ≤ 1, and EθX(n)X∗(n) =

V (n/N);
b) the sequence of random vectors {(X(n), νn)} satisfies the uniform Cramer’s and

ψ-mixing conditions;
c) the random sequence {νn} is a martingale-difference sequence w.r.t. the filtration

{Fn};
d) the vector of predictors X(n)

def
= (x1n, . . . , xKn)

∗ is Fn−1-measurable.
On the segment [0, 1] define the K ×M matrix process

uN(t)
def
=

[Nt]∑
i=1

X(i)Y∗(i),

13



and the K ×K matrix process

TN(t)
def
=

[Nt]∑
k=1

X(k)X∗(k).

In virtue of conditions a), b), c), the matrix process N−1TN(t) weakly converges
(in the Skorokhod space) to a positive definite symmetric matrix function R(t)

def
=∫ t

0

V (s)ds, and the rate of convergence is exponential. Below we denote R(1)
def
= R.

Analogously, due to conditions a)-d), the matrix process N−1
[Nt]∑
k=1

X(k)ν∗(k) weakly

converges to zero with the exponential rate. Both conclusions follow from the fact that
the random processes

N−1
[Nt]∑
n=1

(xinxjn − Eθxinxjn) ,

N−1
[Nt]∑
n=1

(xinνn) , i, j = 1, . . . , k

weakly converge to zero (as N → ∞) with the exponential rate (see Brodsky, Dark-
hovsky (2000)).

For estimation of an unknown change-point, the following statistic is used:

ZN(n) = N−1
(
uN(n/N)− TN(n/N)(TN(1))

−1 uN(1)
)
, n = 1, 2, . . . , N. (10)

An arbitrary point n̂ of the set Arg max
[βN ]≤n≤[αN ]

‖ZN(n)‖2 is assumed to be the esti-

mate of an unknown change-point. Again we define θ̂N = n̂/N as the estimate of the
change-point parameter θ.

Statistic (10) generalizes statistic (7) to the situation of stochastic predictors. As-
sumptions a)-d) guarantee the analogous properties of this statistic. In particular, the
limit value (as N → ∞) of the mathematical expectation of the statistic ZN([Nt])

attains its unique global maximum on the segment [0, 1] at the point t∗ = θ.
Assumptions a)-d) guarantee convergence in probability of an arbitrary point of

Arg max
[βN ]≤n≤[αN ]

‖ZN(n)‖2 to the point θ with the exponential rate. Hence the Pθ-a.s.

convergence of the proposed estimate to θ follows.

Theorem 4. Suppose that the conditions a)-d) are satisfied and rank(B) = M if θ ∈
[β, α], where B

def
= B(θ) =

(
E − R

−1
R(θ)
)
(a− b)∗.

Then the estimate θ̂N of the change-point parameter θ converges to θ Pθ-a.s. as
N → ∞.
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Besides, there exists the number N1 = N1({X(n)}) such that for N > N1 and any
fixed ε, (min ((α− β), ‖R‖/2) > ε > 0), the following inequality holds:

sup
β≤θ≤α

Pθ{|θ̂N − θ| > ε} ≤ δN(ε)+

m0 (C(ε,N)/R)




exp


−Nβ

(
C(ε,N)/R

)2
4gm0 (C(ε,N)/R)


 , if C(ε,N) ≤ RgT

exp


−TNβ

(
C(ε,N)/R

)
4m0 (C(ε,N)/R)


 , if C(ε,N) > RgT,

where C(ε,N) =
[ελV

4M
‖a−b‖2− LV

N

]
, M = max

β≤t≤α
‖M(t)‖, the constants g, T,m0(·) are

taken from the uniform Cramer’s and ψ-mixing conditions, and M(t), λV , LV , δN , R

are described in the proof.
In particular, for independent observations m0(·) = 1.

Comparing Theorems 1 and 3, we conclude that the order of convergence of the
proposed estimate of the change-point parameter to its true value is asymptotically
optimal as N → ∞.

From the proof we obtain the following

Corollary 2. Let S > 0 be the decision threshold and S
def
= S − LV

N
. Then:

- for type 1 error the following inequality is satisfied:

P0{ max
[βN ]≤n≤[αN ]

‖ZN(n)‖2 > S} ≤ δN(S) +m0 (S/R)




exp

(
− TNSβ

4Rm0 (S/R)

)
,

S > RgT

exp

(
− NβS2

4R2gm0 (S/R)

)
,

S ≤ RgT.

- for type 2 error the following inequality holds:

Pθ{ max
[βN ]≤n≤[αN ]

‖ZN(n)‖2 ≤ S} ≤ δN(S) +m0(r)




exp

(
− TNβr

4Rm0(r)

)
,

r > RgT

exp

(
− Nβr2

4R2gm0(d)

)
,

r ≤ RgT,

where r = R−1 (‖M(θ)‖ − S − LV ) > 0; ‖M(θ)‖2 = tr(B∗
R

2(θ)B).
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4.2 Multiple change-points

The proposed method can be generalized to problems of detection and estimation
of multiple change-points in regression models. A widespread approach to solving
these problems (see, e.g., Bai, Lumsdaine, Stock (1998)) consists in decomposition of
the whole obtained sample to all possible subsamples and construction of regression
estimates for each of these subsamples. The decomposition for which the minimum of
the general sum of regression residuals is attained, is assumed to be the estimate of
a true decomposition of the whole samples of obtained observations into subsamples
with different regression regimes.

These methods turn out to be rather time consuming and have a low power. For
example, if there are only two regression regimes in an obtained sample but we do not
know this fact and are obliged to try all possible subsamples up to the order 20, then
many false structural changes will be obtained.

In this paper we propose a new method of detection and estimation of multiple
change-points which is not based upon LSE of regression parameters and computa-
tion of corresponding residuals. This method is more effective and robust to possible
inaccuracies in specification of regression models.

Let us explain the idea of this method by the following example of a multiple
regression model (1) with deterministic predictors and the row-matrix Π(ϑ, n). In other
words, let ϑ = (θ1, θ2, . . . , θk), k ≥ 1 is an unknown vector of change-point parameters
such that 0 ≡ θ0 < β ≤ θ1 < · · · < θk ≤ α < θk+1 ≡ 1, where, as before, β, α are
known numbers, and the observations has the form

yn = Π∗(ϑ, n)F (n/N) + νn. (11)

Here

Π(ϑ, n) =
k+1∑
i=1

ai I([θi−1N ] < n ≤ [θiN ]),

where ai �= ai+1, i = 1, 2, . . . , k are unknown vectors, F (t) is a given vector-function
(all assumptions and notations see in Subsection 4.1.1).

Consider our main statistic (7). The mathematical expectation of this statistic
converges as N → ∞ to the function

m(t) =

t∫
0

F (s)F ∗(s)Π(ϑ, s)ds− A(t)I−1

1∫
0

F (s)F ∗(s)Π(ϑ, s)ds.
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In the situation when there is no change-points, i.e., the vector of regression coef-
ficients is constant on [0, 1], the vector function m(t) equals to zero for each t ∈ [0, 1].
This property of m(t) makes it possible to effectively reject the null hypothesis about
the absence of change-points when they are really present in an obtained sample.

Consider the following method of detection and estimation of multiple change-
points. Fix a small parameter ε, min(β, 1−α) > ε > 0. The proposed method consists
of the following steps:

1. Compute statistic (7) by the data in the diapason of arguments N def
= ([βN ], . . . , [αN ]).

If max
n∈N

‖ZN(n)‖2 > C, where C = C(N) is the decision threshold, then compute
nmax = argmax‖ZN(n)‖2, otherwise the sample is assumed to be stationary (without
change-points).

2. Put N ′
= nmax− [εN ] and compute statistic (7) by the data in the diapason of

arguments N ′ def
=
(
[βN ], . . . , N

′) according to step 1. This cycle is repeated until:
1) we obtain a stationary sub-sample in the diapason of data with arguments(

[βN ], . . . , N
′), i.e. max

n∈N ′
‖Z

N
′ (n)‖2 ≤ C(N

′
). Then we put n(1) = N

′
+ [εN ] as

the estimate of the first change-point and go to step 3.
or
2) we obtain a sample of the size N ′ ≤ [2εN ]. Then we put n(1) = N

′
+ [εN ] as

the estimate of the first change-point and go to step 3.
3. Put n′

= n(1) + [εN ] and compute statistic (7) by the data in the diapason of
arguments

(
n

′
, . . . , [αN ]

)
(i.e. with the relative arguments [1, . . . , [αN ]− n

′
+ 1]) and

do according to steps 1 and 2. The cycle is repeated until we obtain a stationary sub-
sample in the diapason of data with arguments [n

′
, . . . , nmax] or nmax− n

′ ≤ [2εN ].
Then we put n(2) = nmax as the estimate of the next change-point. If N − n(2) <

[2εN ] then stop, otherwise repeat step 3 by the data in the diapason of arguments
(n(2), . . . , [αN ]).

In this way we continue to compute the estimates n(3), . . . of change-points. As
a result we obtain the series of estimates n(1), n(2), . . . of the true change-points
[θ1N ], . . . , [θkN ]. The number k̂N of these estimates is determined by the quantity
of stationary sub-samples

[1, . . . , n(1)], . . . , [n(i), . . . , n(i+ 1)], . . . , [n(k̂N ), . . . , N ]

.
The proposed method is based upon reduction to the case of only one change-point
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and the properties of the matrix m(t). The crucial point of this method is the choice
of the decision threshold C(N) which depends on the sample size N . Below we give
an explicit formula for computation of C(N).

Let k̂N be the estimate of the number of change-points in the sample and ϑ̂N =

(θN1, . . . , θNk̂N
)∗ be the vector of estimated coordinates of change-point parameters.

The following theorem holds for model (11).

Theorem 5. Suppose assumptions of Theorem 3 are satisfied. Moreover, assume that
there exist h > 0, B > 0 such that for all i = 2, . . . , k + 1:

0 < ‖A(θi−1, θi)A
−1(θi−2, θi−1)‖ ≤ h

‖A(θi−1, θi)(ai − ai−1)‖ ≥ B > 0,

Then for sufficiently small δ > 0:

P{(k̂N �= k) ∪ {(k̂N = k) ∩ (max
1≤i≤k

|θ̂Ni − θi| > δ)}} ≤ C(δ) exp(−D(δ)N),

where constants C(δ) > 0, D(δ) > 0 do not depend on N .

Analogous theorem can be proved also for stochastic predictors.

From theorem 5 it follows that the estimated number of change-points converges
almost surely to its unknown true value, as well as estimated coordinates of unknown
change-points converge exponentially to their true values as the sample size tends to
infinity. Moreover, comparing results of theorem 2 and theorem 5 we conclude that
the proposed method of detection and estimation of multiple change-points is asymp-
totically optimal by the order of convergence of estimated change-point parameters to
their true values.

4.3 A variant of the limit distribution theorem for the decision

statistic under the null hypothesis

For practical applications of the proposed method and, in particular, for the rational
choice of the decision threshold C(N), we need to study the limit distribution of the
decision statistic under the null hypothesis.

Let us formulate a variant of the limit theorem for the simple case of unique
change-point, deterministic predictors, statistically independent noises νn, and the one-
dimensional dependent variable yn.
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Suppose there exists a continuous function g(t), 0 ≤ t ≤ 1 such that Eθ ν
2
n =

g2(n/N).
Put

σ2
i =

1

t

t∫
0

f 2
i (s)g

2(s)ds, i = 1, . . . , K

G(t) = (σ1(t), . . . , σK(t))
∗, Z(t) = G(t)W (t), U(t) = Z(t)− A(t)I−1Z(1),

where W (t) is the standard Wiener process, A(t), I are the above defined matrices (see
Subsection 4.1.1).

Consider our main statistic, the vector process ZN(t) = ZN([Nt]) (see (7)). Then for
any θ ∈ [β, α], the vector process

√
N(ZN(t)−Eθ ZN(t)) weakly converges to the vector

process U(t) in the Skorokhod space DK [β, α] (see Brodsky, Darkhovsky (2000)). In
particular, under the null hypothesis, the weak convergence is valid at [0, 1].

Therefore, we have the following

Theorem 6.

lim
N→∞

P0{
√
N max

t∈[0,1]
‖ZN(t)‖ > C} = P0{max

t∈[0,1]
‖U(t)‖ > C} (12)

(here we use the Euclidean norm for vectors).

The vector U(t) is Gaussian with zero mean and the following K ×K correlation
matrix D(t):

D(t) = t
[
G(t)G∗(t)−G(t)G∗(1)I−1A(t)− A(t)G(1)G∗(t)

]
+A(t)I−1G(1)G∗(1)I−1A(t).

Therefore, we have the following equality by distribution

U(t) =
√
D(t)ζ (13)

where ζ = (ζ1, . . . , ζK)
∗ is the standard Gaussian vector.

Taking (13) into account, we get

max
0≤t≤1

‖U(t)‖ = max
0≤t≤1

√√√√ K∑
i=1

d2i (t)ζ
2
i

def
= ρ(ζ), (14)

where d2i (t) are eigenvalues of the matrix D(t). The function ρ(ζ) can be explicitly
calculated for any given family of functions F (t), g(t).
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Therefore, from (14) we have

P0{max
0≤t≤1

‖U(t)‖ > C} =

∫
{u:ρ(u)>C}

ϕ(u)du, (15)

where ϕ(u) is the density of the standard Gaussian distribution.
From (12) and (15) we can conclude that type 1 error goes to zero as exp(−constNC2)

for the proposed method. This fact allows us to choose the decision threshold. Note
that the same asymptotical order can be obtained from corollary 2 (see Subsection
4.1.1). For independent noises we have

P0{ max
[βN ]≤n≤N

‖ZN(n)‖2 > C} ≤




exp

(
−TNCβ

4R

)
, C > gT

exp

(
− NβC2

4R2gm0(C)

)
, C ≤ gT,

(the notations see in Subsection 4.1.1).
Therefore, we conclude that type 1 error αN goes to zero exponentially as N → ∞

for the proposed method.
So, the threshold can be calculated from the relation

C = C(N) =
1√
N

| lnαN |λ,

where λ is a certain calibration parameter which depends on variations of predictors,
dispersions of noises and characteristics of their statistical dependence.

A more close study allows us to obtain the following practical formula for the
decision threshold C = C(N):

C(N) =

(
max

i
σ2
i ·max

i
max
0≤t≤1

f 2
i (t)
)1/2

√
N

λ,

where σ2
i is the dispersion of νi and λ > 0 is the calibration parameter.

5 Experiments

In this section we present results of a simulation study of the proposed method in
comparison with other well known tests. The following methods are most often used
for detection of structural changes in regression models:

- The Chow test most often used in econometric packages;
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- The CUSUM (cumulative sums) test based upon recursive regression residuals
(Brown, Durbin, Evans, 1975);

- The CUSUM test based upon residuals of ordinary least squares method (OLS
CUSUM test, Ploberger, Kramer, 1992);

- Fluctuation test (Ploberger, Kramer, Kontrus, 1989)
- Wald test (Andrews, 1993, Andrews, Ploberger, 1994)
- LM тест (Lagrange Multilpier test, Andrews, 1993).
However, it is well known (see, e.g., Maddala and Kim (1998)) that the Wald test

(together with the QMLE - quasi-maximum likelihood estimation test) is the best and
most often used for detection of changes in regression models because it has the best
characteristics of power and accuracy of change-point estimation.

The Wald test statistic is defined as follows:

SupW = max
1≤m≤N

N [
S(N)− S1(m)− S2(N −m)

S1(m) + S2(N −m)
],

where S(N) is the sum of regression residuals constructed by the whole sample of
the size N ; S1(m) is the sum of regression residuals constructed by the sub-sample of
the first m observations; S2(N − m) is the sum of residuals of the regression model
constructed by the last N −m observations.

It is natural to define the estimate of the change point as n0 ∈ arg sup W , and the
corresponding estimate of the change-point parameter θ̂N = n0/N .

Comparison of characteristics of different methods is carried out in the following
way. First, methods are ’equalized’ by the value of type 1 error by means of choice of
the corresponding decision thresholds. In practice, for this purpose we use experiments
with stationary samples (without structural changes) in which the 95-percent quantiles
of the variation series of the decision statistics are computed (see below, table 1).
Second, for the chosen sample sizes and decision thresholds, experiments with non-
stationary samples are performed in which we compute estimates of the type 2 error
probability and instants of change-points (see tables 2 and 4). The method of change-
point detection ’a’ is preferable w.r.t. the method "b" if for the same values of the
type 1 error, it gives lower estimates of the type 2 error and the error of change-point
estimation.
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5.1 Deterministic regression plan

We compared characteristics of our method with those of the Wald test using the
following regression model with deterministic predictors:

yi = c0 + c1 xi + ξi, i = 1, . . . , N (16)

where (x1, . . . , xN)
∗ is the vector of deterministic predictors; {ξi} is the Gaussian noise

sequence with zero mean and unit variance; c0, c1 are regresson coefficients which change
at the instant n0 = [θ N ], 0 < θ < 1.

The number of independent trials of each experiment was equal to k=2000. The
estimates of decision thresholds were obtained as follows. For each stationary sample,
the 95-percent and 99-percent quantiles of the variation series of maximums of the
decision statistic were computed in 2000 trials. These quantiles were then assumed to be
estimates of the decision thresholds for 5-percent and 1-percent error level, respectively.

The values of the threshold C given in table 1, were used as decision bounds for
the confidence probability 95 percent in experiments with non-stationary regression
models. The following cases were considered:

- before the change-point: c0 = 0, c1 = 1

- after the change-point: c0 = δ, c1 = 1.
In experiments the parameter δ and the sample size N were changed. The following

characteristics of the proposed method were estimated:
- The empirical estimate of decision threshold C (more exactly, the empirical esti-

mate of max
n

‖ZN(n)‖);
- The empirical estimate of type 2 error probability ŵN ;
- The empirical estimate of the change-point parameter θ̂N .
Results obtained for the Wald test are given in the following tables.
Table 1. Estimation of the decision thresholds for the Wald test for

different sample sizes

N 100 200 300 400 500 700 1000 1200

p = 0.95 10.10 8.09 9.59 8.66 8.12 7.62 7.51 7.43

p = 0.99 12.60 10.88 14.14 12.10 12.20 9.97 11.68 10.02

Table 2. Estimation of the change-point parameter θ = 0.30 by the Wald

test
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N 300 400 500 700 1000

δ = 0.3 C 5.63 6.76 8.24 9.77 12.09
ŵN 0.83 0.71 0.59 0.46 0.32
θ̂N 0.29 0.25 0.22 0.19 0.20

δ = 0.4 C 9.65 10.20 11.88 15.27 19.32
ŵN 0.56 0.47 0.34 0.23 0.18
θ̂N 0.28 0.25 0.22 0.20 0.23

The same model was studied with the help of the method proposed in this paper.
1) Decision thresholds
In the first series of experiments, model (16) with constant coefficients c0 = 0, c1 = 1

was used. The following results were obtained.
Table 3. Estimation of the decision thresholds

N 100 200 300 400 500 700 1000 1200

p = 0.95 0.401 0.257 0.202 0.182 0.150 0.125 0.103 0.081

p = 0.99 0.450 0.300 0.247 0.211 0.187 0.162 0.138 0.102

2) The estimates of the change-point parameter
Table 4. Results of estimation of the change-point parameter θ = 0.30

N 300 400 500 700 1000

δ = 0.3 C 0.179 0.177 0.168 0.157 0.151
ŵN 0.64 0.55 0.33 0.13 0.03
θ̂N 0.340 0.322 0.332 0.324 0.307

δ = 0.4 C 0.220 0.211 0.208 0.195 0.192
ŵN 0.28 0.24 0.11 0.02 0.005
θ̂N 0.315 0.312 0.308 0.305 0.304

Table 5. Results of estimation of the change-point parameter θ = 0.50

N 300 400 500 700 1000

δ = 0.3 C 0.194 0.184 0.175 0.168 0.164
ŵN 0.62 0.50 0.25 0.05 0.01
θ̂N 0.456 0.485 0.501 0.502 0.499

δ = 0.4 C 0.231 0.221 0.215 0.214 0.211
ŵN 0.26 0.22 0.003 0.02 0
θ̂N 0.495 0.495 0.489 0.501 0.499
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Comparing results from tables 2 and 4, we conclude that type 2 error estimates
for our method are lower than for the Wald test, and the error of estimation for our
method is much lower than for the Wald test. Therefore, we conclude that our method
is essentially better by the main performance characteristics of change-point detection
than the Wald test, and so, we conclude that the proposed method is one of the most
effective among all known tests for detection and estimation of structural changes in
regression models.

Comparing results from table 4 and 5, we can conclude that the quality of esti-
mation of the change-point parameter θ depends on its location on the segment [0, 1]:
estimation of θ which is closer to the bounds of the segment [0, 1] is more difficult.

In next two subsections we investigate our methods.

5.2 Stochastic regression plan

In this series of experiments the following model of observations was used:

yi = c0 + c1 xi + ξi, i = 1, . . . , N

where (x1, . . . , xN)
∗ is a stationary random sequence of the following type:

xi = ρxi−1 + ηi, i = 1, . . . , N, x0 ≡ 0,

{ξi, ηi} is the sequence of independent Gaussian r.v.’s with zero mean and unit disper-
sion; c0, c1 are regression coefficients which change at the instant n0 = [θ N ], 0 < θ < 1;
|ρ| < 1.

1) Estimation of decision thresholds
In the first series of tests decision thresholds were estimated. For this purpose,

stationary sequences (without change-points) were used: c0 = 0, c1 = 1, ρ = 0.3. The
following results were obtained.

Table 6. Estimation of decision thresholds (the case of stochastic predic-

tors)
N 100 200 300 400 500 700 1000 1200

p = 0.95 0.355 0.291 0.230 0.188 0.150 0.132 0.103 0.082

p = 0.99 0.401 0.332 0.273 0.218 0.192 0.171 0.141 0.100

2) Estimation of the change-point parameter
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In the following series of experiments a model with a structural change in the
regression coefficients was used:

- before the change-point: c0 = 0, c1 = 1

- after the change-point: c0 = 0, c1 = 1.3.
Results obtained are presented in table 7.

Table 7. Estimation of change-point parameters (the case of stochastic

predictors)
N 500 700 1000 1200

θ = 0.5 C 0.167 0.157 0.152 0.152
ŵN 0.32 0.21 0.02 0
θ̂N 0.481 0.495 0.498 0.499

θ = 0.3 C 0.156 0.148 0.142 0.140
ŵN 0.45 0.30 0.03 0
θ̂N 0.312 0.310 0.308 0.301

5.3 Multiple structural changes in multivariate systems

The following multivariate system was used:

yi = c0 + c1yi−1 + c2zi−1 + c3xi + εi

zi = d0 + d1yi + d2xi + ξi

xi = 0.5xi−1 + νi

εi = 0.3εi−1 + ηi,

where ξi, νi, ηi, i = 1, 2, . . . are independent standard Gaussian random variables.
Here (yi, zi)

∗ is the vector of endogenous variables, xi is the vector of exogenous
variables, (yi−1, zi−1, xi)

∗ - the vector of pre-determined variables of the considered
system.

Dynamics of this system is characterized by the following vector of coefficients:
u = [c0 c1 c2 c3 d0 d1 d2]. The initial vector of coefficients is [0.1 0.5 0.3 0.7 0.2 0.4 0.6].
The first structural change occurs at the instant θ1 = 0.3. The vector of coefficients
u changes into [0.1 0.5 0 0.7 0.2 0.4 0.6]. The second structural change occurs at the
instant θ2 = 0.7. Then the vector u changes into [0.1 0.5 0 0.7 0.2 0.4 0.9].

In the first series of tests the decision threshold C was estimated. For this purpose,
the model with the initial vector of coefficients u and without change-points was used.
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In 2000 independent trials the maximums of the decision statistic were computed and
the variation series of these maximum was constructed. Then the 95-percent and the
99-percent quantiles of this series were computed. These values are presented in table
8.

Table 8. Estimation of decision thresholds (the case of a multivariate

system)
N 200 400 500 700 900 1000 1200 1500

p = 0.95 0.28 0.20 0.19 0.18 0.16 0.15 0.145 0.14

p = 0.99 0.36 0.33 0.28 0.24 0.23 0.21 0.19 0.17

The computed 95-percent quantiles were assumed to be the decision thresholds for
the corresponding sample volumes.

In the next series of tests non-stationary samples with multiple change-points were
used. The true number of change-points was equal to p = 2, the coordinates of these
change-points were θ1 = 0.3 and θ2 = 0.7. In table 9 the following performance
characteristics are given:

- w is the estimate of the probability Pθ{p̂N �= p} in 2000 independent trials, where
p̂scriptscriptstyleN is the estimate of the number of change-points in the data.

- ∆ is the estimation error on condition that p̂N = p, i.e. ∆ =
√∑p

i=1 (θ̂i − θi)2.
Table 9. Estimation of change-point parameters (the case of a multivari-

ate system)
N 200 400 500 700 900 1000 1200 1500

w 0.96 0.54 0.39 0.21 0.04 0.03 0.02 0.01

∆ 0.02 0.05 0.04 0.02 0.03 0.02 0.01 0.005

6 Conclusions

In this paper the following main results were obtained:
1. The general statement of the retrospective change-point detection and estimation

problem in multivariate linear systems is given (both one change-point and multiple
change-point problems, both independent and dependent sequences of observations)

2. The prior lower bounds are proved for the main performance characteristic in
retrospective change-point detection and estimation: the probability of the error of
change-point estimation, in different contexts of change-point estimation: from one
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change-point in multi-factor linear regressions with deterministic and stochastic re-
gression plans, to multiple change-point problems in multivariate linear models.

3. A new method is proposed for the problem of retrospective change-point detec-
tion and estimation in multivariate linear systems. The main performance characteris-
tics of this method: type 1 and type 2 errors, the error of change-point estimation, are
studied theoretically. We prove that the proposed method is asymptotically optimal by
the order of convergence of the change-point estimate to its true value as the sample
size tends to infinity.

4. For the problem of multiple change-point detection and estimation, we propose
a general setup in which both the number of change-points and their coordinates in
the sample are unknown. For this problem statement, a new method is proposed
which gives consistent estimates of an unknown number of change-points and their
coordinates. This method is also asymptotically optimal by the order of convergence
of these estimates to true change-point parameters.

5. A simulation study of characteristics of the proposed method for finite sample
sizes is performed. The main goals of this study are as follows: to compare performance
characteristics of the proposed method with characteristics of other well known methods
of change-point detection in linear regression models: the Wald test, the Chow test,
the CUSUM tests with ordinary and recursive regression residuals, the fluctuation test;
to consider more general multivariate linear models and performance characteristics of
the proposed method in these multivariate models. The main conclusion: performance
characteristics of the proposed method are no worse but often even better than those
of well known change-point tests.
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