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1. Introduction

The problem of sequential detection and diagnosis of structural changes
in stochastic multivariate systems on the basis of sequential observations has
many applications, including detection of changes in parameters of regres-
sion equations, testing adequacy of econometric models, fault detection and
isolation in complex dynamical systems. There is an extensive statistical and
econometric literature dealing with methods of solving these problems.

Page (1954) considered the cumulative sums (CUSUM) test for detection
of possible changes in the distribution function (d.f.) of a sequence of inde-
pendent observations. Girshick and Rubin (1952) proposed a quasi-Bayesian
test for solving the same problem.

In 1959 Kolmogorov and Shiryaev proposed the formal statement of the
problem of "quickiest detection of spontaneous effects" which was later called
the "disorder problem". Shiryaev in 1959-1965 found the optimal solution
of this problem for the situation of full a priori information on the distribu-
tion function (d.f.) of observations and a change-point. This test coincides
with the Girshick-Rubin test is therefore called the GRSh (Girshick-Rubin-
Shiryaev) test.

In the situation when there is no a priori information on a change-point,
Lorden (1971), Pollack (1985), and Moustakides (1986) proved that CUSUM
and GRSh tests are asymptotically optimal in the problem of sequential
detection of an abrupt change in the one-dimensional d.f. of independent
observations.

Willsky (1976), Willsky and Jones (1976) pioneered research into sequen-
tial detection of abrupt changes in stochastic dynamical systems. Stochastic
"noises" in such systems were assumed to be Gaussian and structural changes
were interpreted as spontaneously emerging additive terms in equations of
considered systems. For detection of these structural changes, the innovation
process of the Kalman filter was used. Different methods generalising these
ideas for sequential change-point detection in stochastic dynamical systems



were proposed by Basseville and Benveniste (1983), Basseville and Nikiforov
(1993), Nikiforov (1995), Bansal and Papantoni-Kazakos (1983).

In works of Lai (1995, 1998) the problem of sequential change-point detec-
tion in dynamical systems was generalized to the non-i.i.d. case. Lai consid-
ers the window-limited generalized likelihood ratio (GLR) schemes and proves
their asymptotical optimality in different problems of sequential change-point
detection in dynamical systems.

In spite of extensive research into the problem of sequential change-point
detection in stochastic dynamical systems, several open problems still exist,
and in particular, the problem of a priori information on observations.

Between the poles of the full knowledge (both the probabilistic mechanism
of data generation and the specification of a system are known) and the full
ignorance (neither the probabilistic mechanism of data generation nor the
specification of a system is known) there exists the most practically relevant
field of semi-parametric model description in which we know the specification
of a stochastic system but the d.f. of observations is unknown to us. Some
important examples include:

1) the multiple regression models and the systems of simultaneous equa-
tions in econometrics. As usual, we know the specification of a model (e.g.,
the linear regression or the autoregression model) but the d.f.’s of "noise"
sequences are unknown to us. The problem consists in sequential detection
of structural changes in these models. These structural changes include both
abrupt changes in coefficients of equations and new terms in their specifica-
tion (e.g., new additive factors in econometric equations).

2) conventional input-output dynamical systems in engineering and con-
trol science (the 'transfer function’ of this system is known but the d.f. of the
‘noise’ sequence is unknown). The problem consists in sequential detection
of spontaneous changes in the transfer function.

3) the general multivariate state-space model in which equations of the
‘state’ and ’observation’ vector processes are known but the d.f. of 'noise’
processes are unknown. Again the problem consists in sequential detection
of possible changes in matrices of coefficients of the ’state’ and 'observation’
vector processes. The additional difficulty here is the fact that the state
vector is unobservable, so possible changes in its statistical characteristics
can be detected only via the analysis of the vector of observations.

The problem of monitoring structural changes in multivariate models at-
tracted research interest in econometrics only at the end of 1990s. Chu,
Stinchcombe, White (1996) considered the problem of monitoring structural
changes in coefficients of a linear regression. They used the fluctuation test
for sequential detection and diagnosis of abrupt changes in coefficients. These
results were followed by Leisch, Hornik, Kuan (2000). Sequential tests based
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upon sums of regression residuals were used by Horvath, Huskova, Kokoszka,
Steinebach (2004) for monitoring structural changes. Dynamic econometric
models with structural changes were considered by Zeileis, Leisch, Kleiber,
Hornik (2005).

The common drawback of these works is as follows: the quality of pro-
posed tests is analyzed only from perspective of their limit distributions as
the sample volume tends to infinity. Properties of these tests for finite sample
volumes are investigated only empirically. Moreover, there is completely no
research on optimality and asymptotic optimality of these methods.

In this paper a new method for monitoring structural changes in econo-
metric models is proposed. The main performance characteristics of this
method are studied for finite sample volumes. The a priori theoretical lower
bounds for these performance characteristics are proved which enable us to
analyze the asymptotic optimality of the proposed method. Monte Carlo
study of the proposed method for static and dynamic econometric models is
performed. Practical applications for the analysis of stability of the German
quarterly model of demand for money (1961-1995) and the Russian monthly
model of inflation (1994-2005) are considered.

2. Method of detection

Model
Consider the following basic specification of the multivariate system with
structural changes:

Y(n)=MIXn)+v, n=12,..., (1)
where Y (n) = (in, - .., Ynm) is the vector of endogenous variables; X (n) =
(T1n, ..., Txy) is the vector of pre-determined variables; v, = (Vin, - .., Varm)'

is the vector of errors. ' is the transposition symbol.
The matrix II M x K changes abruptly at some unknown change-point
m, i.e.

[I=1I(n)=al(n<m)+bl(n>m), n=NN+1,... (2)

where ||a — b|| > 0.
Model (1) generalizes many widely used econometric models, i.e.
- static and dynamic regression models with multiple predictors
- systems of simultaneous econometric equations.

Assumptions
Now let us formulate assumptions about the random noise process v,
and predictors X (n) defined on the probability space (£2,§,P). Consider
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a filtration {F,}, F1 C F» C ... F,--- C §, where F, is the volume of
information available at the instant n.

Let Hy and H, be two o-algebras contained in §. Let L,(H) be a col-
lection of L,-integrated random variables measurable with respect to some
o-algebra H C §. Define the following measure of dependence between H;

and Hg:
_ 1’

Let (&,7 > 1) be a sequence of real random vectors on (£2,§,P). Let
F=0{&:s<i<t}1<s<t< oo, bethe minimal o-algebra generated
by random vectors &;,s < <t. Put

P(n) = Stgllw( 1 85n)

P(AB)
My, H) = su B et
Yt Ho) AeHl,BeHz,IE(A)P(B);éO P(A)P(B)

Definition 1.

A sequence (§;i > 1) is said to be a sequence with i-mizing if the
function ¢ (n) (which is also called the coefficient of 1-mizing), tends to zero
as n tends to infinity.

For any € > 0 define the number ¢q(€) > 1 from the following condition:
W(l) < eforl > ¢ye).

Definition 2.

A sequence {((n)} of real random vectors ((n) o (G1(n),...,Ck(n)), sat-
isfies the uniform Cramer condition if there exists a constant H > (0 such
that

Sl:lp E exp (t¢i(n)¢j(n)) < oo

forany i,j =1,...,k and |t| < H.

In particular, for a centered random sequence &, the unified Cramer con-
dition is equivalent to the following (see Petrov, 1987): there exist numbers
h >0, T > 0 such that for 0 <t < T~

1
Eelén < exp(§t2h), Vn > 1.

Let us formulate assumptions about predictors X (n) and noises v,,. Sup-
pose that predictors X (n) and noises v, are random and strictly stationary
and the following conditions are satisfied:

1) X(n) is F,—1 measurable;

2) there exists a continuous matrix function V' (¢), t € [0, 1] such that for
any 0 <t <t <1

[t2N] t2

lim EN7' ) X(j)X’(j):/ V(t)dt,

N—o0 )
J=[t1N] t1



to
where [ V(t)dt is the positively defined matrix;
t1
3) the random vector sequence {(X(n),v,)} satisfies ¢)-mixing and the
unified Cramer condition.
4) {v,} is a martingale-difference sequence w.r.t. the flow {F,}.
These assumptions are satisfied in most practical problems of econometric
analysis, and in particular, for multifactor regression models and systems of
simultaneous econometric equations.

Method

The idea of our method is based upon the "moving window" statistic for
sequential detection of a structural change. Suppose the size of this window
is defined by a certain large parameter N. For any n = N, N+1,... consider
N last vectors of observations Y (i), X (i),i=n—N+1,...,n.

The method of detection is constructed as follows. First, consider the
matrices K x K:

l
T'(1,0) =Y X(i+n—N)X(i+n—N), I=1,...,N, (3)

i=1
second, the matrices K x M:

l
(L) =Y X(i+n-N)Y(i+n—-N), I=1,... N, (4)

i=1
and third, the decision statistic

1 -1 _n
Vi) = (" (1L0) = T"(LO(T"(1,N)) 7 2"(1, N)). ()
where [ =1,..., N, YJ(N) = 0 and by definition, Y}}(0) = 0. The existence
of the inverse matrix 7"(1, N))~! for a large N follows from condition 2).
Fix the number 0 < 8 < 1/2. For detection of the change-point m, we
define the stopping time

v = inf{n : max 1Y) > C}, (6)

where C' is a certain decision threshold, ||A]| is the Euclidean norm of the
matrix A.

In the sequel we denote by Py(Ep) the measure (mathematical expecta-
tion) corresponding to the observed sequence without change-points and by



P,.(E,,) - to the sequence with the change-point m. Hy denotes the hypoth-
esis of statistical homogeneity of observations (no structural changes); H; -
the hypothesis about the presence of a change-point in the sample.

The proposed method has the following performance characteristics:

1) Probability of type 1 error ("false alarm"):

= P, Yyl C 7
o = sup Af max VR0 > €}, @

2) Probability of type 2 error ("missed goal"):

Oy = i P, Yy < CY.
v= min Pal max V(D] < CY
This characteristic describes the situation when the decision statistic does
not exceed the boundary C' for a sample with a change-point, i.e. for m <
n < m—+N. Remark that this definition formally corresponds to the following
characteristic

* — n < .
v=Fnl max o omax VOl < CY
However, 63 < oy and therefore the exponential upper estimate for oy ob-
tained in Theorem 2 is valid for 6% as well.
3) The normalized delay time in change-point detection:

v = (Tv —m)"/N, (8)

where at = max(0, a).
In the following theorem the asymptotical behavior of the "false alarm"
probability is studied.

Theorem 1.

Suppose the random process v, satisfies the uniform Cramer and -mixing
condition.

For any C' > 0 the following exponential upper estimate for the "false
alarm" probability holds:

exp( ), Cy>hT
an < dolCh) sy )
eXp(—m), C < hT,

where the constants h, T' and ¢o(Cy) > 1 are taken from Cramer’s and -
mixing condition, respectively, C; = C/(1 + K).
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In the following theorem we study type 2 error oy and the normalized
delay time vy in sequential change-point detection.
Consider the matrix K x K

At) = / V(r)dr, 0<t<1.

Define I = A(1). For any 0 < t < 1 the matrix A(t) is positively definite.
For any 0 < # < 1, consider the function

9(0) = | A@O)(E — I""A(0)(a —b) |,

where E' is the unit matrix K x K.

Evidently, g(0) = ¢g(1) = 0. Consider the point #* of the global maximum
of g(#) on the segment [0, 1] - the root of the equation E = "1 A(0)+A(0)I !,
i.e. A(f) = 1/2. In virtue of the above assumptions, the root of this equation
exists and is unique. The function g(#) is continuously differentiable by
g e (0,1).

Choose the decision threshold 0 < C' < g(6*). The following theorem
holds.

Theorem 2.

Suppose the above assumptions 1)-4) are satisfied and rank(D) = M,
where D = (E — I"*A(6))(a —b)". Denote d, = (g(6*) — C)/(1 + K). Then
for the probability of type 2 error the following upper estimate holds:

exp(—%), dl > hT
Bn < do(dyr) (b?\fd% (10)
eXp(_W(ah))’ dy < hT,

The relative delay time vy tends almost surely to a deterministic limit as

N — oo:
B (v —m)™

N — " P, —as. as N — 00, (11)
where ~v* is the minimal root of the equation g(t) = C, 0 < v* < 1. Denote
dg(t)

G="a

Moreover, for any finite NV and 0 < € < 1 the following inequality holds:

N
exp(—4¢v(ﬁ)), v > hT
* v
Puflw =77 > €} < 60(0) ) (12)
xp(— , < hT.
P o)
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1+ K
In theorems 1 and 2 the main performance characteristics of the pro-

posed method were considered. These characteristics can be used for the
study of asymptotic optimality of our method. This study is based upon the
information-theoretical lower bounds for the main performance measures of
any method of sequential detection of structural changes. These information
bounds are proved in the next section.

where v =

3. Asymptotic optimality

In this section we prove that the proposed method is asymptotically (as
N — o0) optimal w.r.t. certain criteria. The following model of observations
is considered. Let (21,22, ...) be a random sequence of independent vector-
valued observations defined on the probability space (2, F, P).

Suppose that the one-dimensional distribution density function f(-) of
observations in this sequence changes at some unknown instant m > 0:

F(z) = { fo(zn,n/N), if 1 <n <morif m = oo (no change) (13)
" fi(zp,n/N), ifm<n

We assume here that the one-dimensional density functions f,(-), fi(+) of
observations z, depend on the time n. For formal convenience, we introduce
here the normalized time ¢t = n/N, where N is some "large parameter" of
a method. In particular, for the method proposed in the previous section,
N is the volume of the window-limited sample of the last N observations.
Then the one-dimensional density function of observations changes at the
time m/N, i.e. fo(z,t) # fi(z,t) in some neighborhood of the change-point
parameter m/N.

Define the stopping time:

v = inf{n: dy(n) =1} (14)
and the probability of the 1st type error (“false alarm"):
ay = s%p P {dn(k) = 1}. (15)
Define also the following value:
v = (v —m)"/N. (16)
The following Theorem holds true.

Theorem 3.



For any m > 1 and sufficiently large N:

Em/J(s) ds > “n(%—o‘N)' + 0(%), (17)

where J(t) is the Kullback information between distributions fy(-,t), fi(-,1):

50 = [ I 5, s (18)
fo(z,1)
In the sequel we assume that the function J(t) is continuous.
The proof of this Theorem is given in the Appendix.
A method of sequential detection of structural changes is called asymp-
totically optimal if the lower bound in inequality (17) is attained as N — oo.
Now we prove another a priori inequality which gives the optimal rate of
convergence of the normalized delay time to its limit value as N — oo.
Again we consider the sequence of independent vector-value random vari-
ables {x(n)} with the one-dimensional density function depending on a cer-
tain parameter § € © and satisfying the following relationship

iP{x( )< 2} — { fo(z,0,n/N), %fn < m or if m = oo (no changes)
fi(z,0,n/N), if m <n.
(19)

By Eom, (Pgn) we denote the mathematical expectation (measure) cor-
responding to the sequence with the change-point at the instant m and the
parameter of § € © of the density function.

Below in this section we suppose that the following conditions are satis-
fied:

1) 6 € ©, where O is an interval of the real axis;

2) % fi(z,0,t) exists and is finite Py, almost surely for all § € © and
1=1,2.
f‘&?l 1(x,0,t)| u(dr) < oo for all § € © and i = 1, 2.

4) Egm[% log f1(z,0,t)]* < oo for all 6 € O.

5) the sequence of the normalized delay times vy converges for every m
Py-a.s. to some deterministic value (6). The function v(6) is assumed to
be continuously differentiable with respect to § € © and ~' () # 0. Without
loss of generality we assume 7/(6) > 0.

6) The Fisher information

1(0,4) = / %dz (20)
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is Riemann integrable with respect to t on [0, ()] for every 6.

Theorem 4.
Let € > 0 be fixed. Then under above assumptions 1)-6) the following
inequality holds:
7(0)

Wo 10, )dt. (21

limNinf N~ In Py {lyn —v(0)] > €} > —

In theorems 3 and 4 the a priori theoretical lower bounds for the main
performance characteristics in sequential change-point detection problems
are established. These lower bounds are precise: the equality signs in (18)
and (21) are attained for the nonparametric CUSUM test in the problem of
sequential detection of abrupt changes in the mathematical expectation of
an observed random sequence y,, n = 1,2,... of the following type:

Yn = —a+hl(n = m)+ &, (22)

where m is an unknown change-point, a > 0, h > a and &, is the centered

independent sequence of "noises".
The CUSUM test has the following form: 7. = inf{n: Z, > C},

Zn - (Zn—l + yn)+> (23)

where C' is a certain bound.

It should be noted that the CUSUM test is essentially based upon the a
priori information on the distribution function of observations before and af-
ter the change-point or on the supposed "direction" of this structural change
(e.g., a shift "up" or "down" by the mathematical expectation).

However, this information, as a rule, is not available in considered prob-
lems of sequential detection of structural changes in multivariate stochastic
systems (including multivariate econometric models). The proposed test en-
ables us to effectively detect spontaneous structural changes in multivariate
systems without this a priori information. However, we should pay some
price for this generality: the proposed test is asymptotically optimal only by
the order of convergence in (18) and (21).

Let us illustrate it by the example of a change in the mathematical ex-
pectation of observations. The decision statistic of our test in this case turns

mto
N

2(n) = (3" v~ 5 2 w)/N.

=1
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Under the null hypothesis the process v/NZ(n) tends to the Brownian bridge
o(W(t)—tW (1)) as N — oo, where W(t), 0 <t <1 is the standard Wiener
process. Therefore, for the type 1 error probability, the following asymptotic
equality holds: ay = (1 + o(1))exp(—2NC?/5?). On the other hand, the
normed by N delay time tends as N — oo to the deterministic limit v* - the
minimal root of the equation v*(1 —~*) = C/h. Therefore inequality (18) in

C
this case turns into 1 — (1 — 4E)1/ ? > 8C?/h*. Remark that this inequality

is strict for all 0 < C' < h/4.

Now let us compare upper estimate (12) obtained in theorem 2 for the
proposed method with a priori estimate from theorem 4. We easily con-
clude that the proposed method i asymptotically optimal by the order of
parameters N and e entering these inequalities. Moreover, for a Gaussian
sequence of independent observations, ¢g = 1, h = ¢%, I(0,t) = 1/0? and
g (v) = 1/4'(#). Therefore, upper (12) and lower (21) estimate differ only
by a constant. Remark, however, that these upper and lower estimate are
precisely equal for the above CUSUM procedure in the one-dimensional case
(see Brodsky and Darkhovsky (2000)).

4. Experiments

In this section some results of a small simulation study of the proposed
method are given. This study was performed in order to evaluate the effec-
tiveness of this method in different situations including sequential detection
of structural changes in multiple regressions and systems of simultaneous
equations.

1) Regression models
The following regression model was considered:

Yi = Co + 174, izl;-"vNa

where z; = 2 + & and & ~ N(0,1).

First, the regression model without structural changes was considered
with ¢g = 0, ¢; = 1 and the maximums of decision statistic ( ) were com-
puted in k=2000 trials of each experiment for different values of the sample
volume N. Then the variation series of these maxima was constructed and
the 95 percent and 99 percent quantiles computed. The values of 99 percent
quantiles for each value of N were assumed to be the decision thresholds th.
The obtained results are reported in Table 1.

Table 1.
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N 20 | 50 | 100 | 200 | 300 | 400 | 500
p=0.950.65]0.51]0320.24]0.18 | 0.16 | 0.14
p=0.99 | 0.85|0.65| 040 | 0.33 | 0.27 | 0.23 | 0.20

In the following series of experiments the regression models with changes
in the coefficient ¢; were considered. For each sample volume N and the
chosen values of the decision threshold th, the estimates of the 1st (’false
alarm’) and the 2nd type error probabilities were computed, as well as the
average delay time in change-point detection in k£ = 2000 independent trials.
The results are reported in Table 2.

Table 2.
N 20 50 100 200 300 400
th 0.85| 0.65 | 0.40 | 0.33 | 0.25 | 0.21
pr 0.03 | 0.015 | 0.07 | 0.025 | 0.015 | 0.025
| In(pr)| 3.50 | 4.20 | 2.50 | 3.69 | 4.20 | 3.69
cp =201 wo 0 0 0
Er 1396 | 7.73 | 8.04
c1 =15 | ws 0.47 | 0.05 0
Er 18.02 | 18.04 | 28.4
c1 =13 | ws 0.13 | 0.05 0
Er 29.0 | 50.1 | 53.3
c1 =12 | we 0.36 | 0.06 | 0.01
Er 65.6 | 85.9 | 90.5

From these results we conclude that efficient detection of smaller struc-
tural changes requires larger sample volumes N.
Now let us consider the following dynamic regression:

yl:2+pyl*1+ul7 y0:07i:1727"'

where u; ~ N(0,1).

Here we consider the problem of sequential detection of unknown changes
in the coefficient p.

In the first series of tests the model without structural changes and the
coefficient p = 0.3 was considered. The maximums of decision statistic (
) were computed in k=2000 trials of each experiment for different values
of the sample volume N. Then the variation series of these maxima was
constructed and the 95 percent and 99 percent quantiles computed. The
values of 99 percent quantiles for each value of N were assumed to be the
decision thresholds th. The obtained results are reported in Table 3.

Table 3.
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N 20 | 50 | 100 | 200 | 300 | 400 | 500
p=0.950.73 052|038 |0.28 | 0.24 | 0.20 | 0.18
p=0.99 | 1.30 | 0.90 | 0.63 | 0.41 | 0.38 | 0.32 | 0.25

Then we consider the regression model with changes in the coefficient p.
For each sample volume N and the chosen values of the decision threshold th,
the estimates of the 1st (’false alarm’) and the 2nd type error probabilities
were computed, as well as the average delay time in change-point detection
in k = 2000 independent trials. The results are reported in Table 4.

Table 4.
N 20 50 | 100 | 200 | 300
th 1.30 1 0.90 | 0.63 | 0.41 | 0.38
pr 0.03 ] 0.02 | 0.04 | 0.04 | 0.02

| In(pr)| 3.50 | 3.91 | 3.21 | 3.21 | 3.91
p=0.71] wy 0 0 0
ET | 3.39]3.06 | 2.76
p=05]wy | 035]0.18 0.04| O
ET ] 9.6 | 20.5|34.2 | 18.3
p=0.4| wy 0.74 1 0.20 | 0.07
ET 39.3 | 80.5 | 60.5

2) System of simultaneous equations
The following system of simultaneous econometric equations was consid-
ered:
Yi = Co + C1Yi—1 + C22i—1 + C3T; + €
zp = do + dvy; + dow; + &
T; = 0.5I1;1 + v
€; = 0.3¢;_1 + 1,

where &, v;,m;, i =1,2,... are independent N(0, 1) r.v.’s.

So (y;, Zi)/ is the vector of endogenous variables, x; is the exogenous vari-
able, and (1,1;_1, 2zi_1,2;) is the vector of predetermined variables of this
system.

The dynamics of this system is characterized by the following vector of
coefficients: u = [cy ¢1 2 ¢3 dy dy dy]. The initial stationary dynamics is
characterized by the coefficients [0.1 0.5 0.3 0.7 0.2 0.4 0.6].

In the first series of tests the decision threshold was estimated. For this
purpose, the model with the initial set of coefficients u and without struc-
tural changes was used. In 2000 independent trials the maximums of the
decision statistic were computed and the variation series of these numbers
constructed. The 95 and 99 percent quantiles are reported in the following
table. The 99 percent quantiles were assumed to be the decision thresholds
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for the corresponding sample volumes. The obtained results are presented in
Table 3.

Table 5.
N 20 50 | 100 | 200 | 300 | 400

p=0.950.99 | 0.67 | 0.49 | 0.39 | 0.30 | 0.25
p=0.99 | 1.50 | 0.85 | 0.65 | 0.47 | 0.38 | 0.32
In the following series of experiments the models with changes in the
coefficient ¢, were considered. For each sample volume N and the chosen
values of the decision threshold th, the estimates of the 1st ('false alarm’)
and the 2nd type error probabilities were computed, as well as the average
delay time in change-point detection in k& = 2000 independent trials. The
results are reported in Table 6.

Table 6.
N 20 50 | 100 | 200
th 1.50 | 0.85 | 0.65 | 0.47
pr 0.04 | 0.06 | 0.05 | 0.06
| In(pr)| 3.21 12811299 | 281

c(6)=095] wy |009] 0 | 0 | 0
Er | 3.80 | 1.71 | 1.21 | 1.01
c(6)=09 | wy |0.19]002] 0 | 0
Er | 4.83 | 2.46 | 1.04 | 1.10
c(6)=08 | wy | 0.45 | 0.15] 0.04 | 0
Er | 652920 13.2 | 11.2

From these results we again conclude that the smaller is the structural
change in the coefficients of the considered SSE model, the larger must be
the sample volume for effective detection of this structural change.

5. Practical applications

5.1. Demand for money in Germany

Liitkepol, Terasvirta, and Wolters (1999) analyzed stability of demand for
money in Germany of 1961-1995s. The quarterly data on money aggregate
M1, index of implicit price deflator of gross national product, real GDP, long-
run interest rate of 1960(1)-1995(4) were used. The cointegration and ECM
(error correction model) relationships for the demand for money function
in the period 1961(1)-1990(2) were constructed which include the following
variables:

m = log(M1/PN) - the logarithm of real M1 per capita,;

p = log(P) - the logarithm of implicit price deflator;
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y =log(Y/PN) - the logarithm of the real GDP per capita;

R - the nominal interest rate;

N - the size of the population;

Q1,0Q2, Q3 - quarterly seasonal dummy variables.

The ECM model constructed by the authors has the following form:

Amt = —0.30Ayt_2 - O67ARt — ]..OOARt_l — 053Apt
—0.12mt_1 + 0.13yt—1 - 0'62Rt—1
~0.05 — 0.13Q1 — 0.016Q2 — 0.11Q3 + .

All regression coefficients in this relationship except the intercept are sta-
tistically relevant at the error level 1 percent and the determination coefficient
is R? = 0.943.

This model includes the series of residuals of the long-term cointegration
relationship

er—1 = —0.12my_1 + 0.13y,_1 — 0.62R;_1,

which is stationary by MacKinnon-Davidson criterion (see Mac-Kinnon
(1993)).

This model was used by Liitkepol et al.(1999), Zeileis et al. (2005) for
testing structural changes in the full sample of 1960(1)-1995(4).The OLE-
based CUSUM test was used and a structural change detected at the point
1990(3).

The goal was to compare results of sequential detection of structural
changes in the same volume of data using the method proposed in this paper
with the above results of Liitkepol et al. In our tests the volume of the
moving window N = 70 was chosen and the decision threshold C' = 0.011 was
computed by the sample 1961(1)-1980(4). Two points of structural changes
nl = 52, n2 = 61 corresponding to the periods 1990(2) and 1992(3) were
detected in the whole sample using our method.

Comparing these results with Zeileis et al. (2005) we conclude that the
method proposed in this paper is quite well adapted to sequential detection
of structural changes in the real econometric data.

5.2. Russian inflation in 1994-2005s

First, we give the regression model for the rate of CPI inflation
(pi=CPI/100-1) computed for the period 1994(1)-2004(12) (monthly data)
with the following set of predictors:

- inflation expectations (pi(-1));

-the rate of money growth: mu=M2/M2(-1)-1, where M2 is the monetary
aggregate M2;

- the rate of growth of the nominal exchange rate of dollar: eps=E/E(-
1)-1;



- the rate of growth of electric energy tariffs for population: piel;
- seasonal dummy: Seas.

pi= 00022 + 0.2734 pi(—1)+ 02105  piel+  0.3547
(0.214) (7.781) (5.353) (24.852)
0.1639 mu(—6)+ 0.012  Seas—  0.017 Seas(—7)
(4.877) (2.312) (—3.515)

The main quality characteristics of this model are as follows: R2 = 0.887;
approximation error ¢ = 0.015; Breusch-Godfrey statistic for higher order
residuals autocorrelation AR 1-7 F(7,111)=2.697. All these characterstics
are quite good.

The proposed method of monitoring structural changes is based upon the
chosen set of predictors for this model (i.e. specification of the model) but
the concrete values of regression coefficients are not essential. The choice of
the decision bound C (threshold) is also important. For this purpose the
quasi-stationary subsample 1995(7)-1998(1) of observations was used. The
decision bound C' computed by this subsample equals C' = 0.002. The volume
of the "moving window" n = 30.

Two structural changes at the instants n1 = 11 and n2 = 40 were detected
in the whole sample. These changes corespond to two important events in
the Russian macroeconomic policy of 1990-2000s: introducing the " currency
corridor" in June 1995 and the financial crisis of September 1998. So the
proposed method enables us to detect substantial structural changes in the
real econometric data.

Conclusion

A new method of monitoring structural changes in multivariate stochastic
systems is proposed which enables us to effectively detect changes in para-
meters of econometric models by sequential observations. The a priori the-
oretical lower bounds for the main performance characteristics of sequential
tests are proved including inequalities for the average delay time in detection
of a structural change and the estimation error probability. The asymp-
totic optimality of the proposed method of monitoring structural changes is
proved.
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