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1. Introduction

Gradual change-point detection

Examples

1. Ecology: monitoring of air and water pollution

2. Technology: technological breaks

3. Economy: financial crises

Problem

– Detect a change-point m not post factum (after M) but ante factum (m ≤

τ ≤M)

– FAR small
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Abrupt changes: univariate models

Page (1954)

Girshick and Rubin (1952)

Kolmogorov, Shiryaev (1959)

Shiryaev (1959-1965)

Lorden (1971), Pollack (1985), Moustakides (1986)

Bansal, Papantoni-Kazakos (1983)

Dragalin V.P., Tartakovsky A.G., Veeravalli V. (1999, 2000)

Mei (2006)

Brodsky and Darkhovsky (2000, 2005, 2008)

Multivariate models

Willsky (1976), Willsky and Jones (1976)

Basseville, Benveniste (1983)

Basseville, Nikiforov (1993)

Lai (1995, 1998, 2000)

Fuh (2003, 2004, 2006, 2007)

Gradual changes

Willsky (1976), Willsky and Jones (1976)

Brodsky and Darkhovsky (2000)
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2. Asymptotic optimality

2.1. Univariate models; independent observations

X = {x(1), x(2), . . .}, m− a change-point,

d

dz
P{x(n) ≤ z} =

⎧⎨
⎩

f(z, 0), n ≤ m or m = ∞

f(z, n−m), n > m,

Consider the following decision rule dC(n) depending on a large

parameter C:

dC(n) =

⎧⎨
⎩

1, stop at time n and accept H1,

0, continue under H0
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Define

αC = sup
n

P∞{dC(n) = 1}

τC = min{n : dC(n) = 1}

γC = (τC −m)+/C

MC = min{l :
∞∑

n=m+l

P∞{τC = n} ≤ αC}.

J(n) = Em(ln
f(z, n−m)

f(z, 0)
), j(t) = J(m+ [tc]), t ≥ 0.

Theorem

Em

γC∫
0

j(t)dt ≥ | ln(αCMC)|
C

+ O(
1

C
).
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Multivariate models; dependent observations

Suppose Z = (z1, z2, . . . ) is a sequence of dependent vector-valued

observations zn = (z1
n, . . . , z

k
n) defined on the probability space (Ω,F , P ).

αC = sup
n

P∞{dC(n) = 1}

τC = min{n : dC(n) = 1}

γC = (τC −m)+/C

MC = min{l :
∞∑

n=m+l

P∞{τC = n} ≤ αC}.

Theorem

Em

γC∫
0

j(t)dt ≥ | ln(αCMC)|
C

+ O(
1

C
),

where

J(n) = Em(ln
fn(zn|z1 . . . zn−1)

f0(zn|z1 . . . zn−1)
),

j(t) = J(m+ [tC]), t ≥ 0.
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Univariate models

(Ω,F, P ),

A dependent random sequence X = {x(1), x(2), . . .},

x(n) = a I(1 ≤ n ≤ m) + h(n−m) I(n > m) + ξ(n), n = 1, 2, . . .

where Eξ(n) = 0.

Assumptions

1) Cramer’s condition:

∃H > 0 : E exp(tξ(i)) <∞, |t| < H, ∀i ≥ 1;

2) ψ-mixing condition: Ft
1 = σ{ξ(1), . . . , ξ(t)}, F∞

t+n = σ{ξ(t+ n), . . .},

Let H1 and H2 be two σ-algebras contained in F.

ψ(H1,H2) = sup
A∈H1,B∈H2,P(A)P(B)�=0

∣∣ P(AB)

P(A)P(B)
− 1

∣∣

ψ(n) = sup
t≥1

ψ(Ft
1,F

∞
t+n) → 0 as n→ ∞.
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Methods

CUSUM

yn = (yn−1 + x(n))+, y0 = 0, dN(n) = I(yn > N).

Roberts–Shiryaev

Rn = (1 + Rn−1)e
x(n), R0 = 0, dN(n) = I(Rn > eN).

”Window-limited”

YN(n) = N−1
N−1∑
k=0

g(
k

N
)x(n− k), n = N,N + 1, . . .

dN(n) = I(|YN(n)| > C),
1∫
0
g2(t)dt = 1.

Exponential smoothing

Y (n) = (1 − ν)Y (n− 1) + νx(n), Y (o) = 0

dN(n) = I(|Y (n)| > C), N = 1/ν, 0 < ν < 1.
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Theorem (CUSUM, RSh)

1) δN =
| lnαN |
N

→ δ∗ as N → ∞, where δ∗ is the minimal nonzero

root of the equation:

κ(t) = ln sup
n
E exp(tξ(n)) = 0;

2) γN → γ∗ Pm-a.s. as N → ∞, where

γ∗∫
0

(h(t) − |a|)dt = 1;

3) for ∀ε > 0:

lim
N→∞

N−1 lnPm{|γN − γ∗| > ε} = − ε2

2σ2

(h(γ∗) − |a|)2

γ∗
.

9



Theorem (”window-limited)

Suppose the above formulated ψ-mixing and Cramer’s conditions

are satisfied and C < h(T ). Then

i)

lim
N→∞

N−1| ln max
1≤n≤N

P∞ (dN(n) = 1) | =
C2

2σ2 ,

ii)

γN
Pm a.s.−→ γe

gm as N → ∞,

where γe
gm is the minimal root of the equation

∫ γe
gm

0 h(t)g(t)dt = C;

iii)
√
N(γN − γe

gm)
d→ η,

where η is the Gaussian random variable with zero mean and the

dispersion
σ2

h2(γe
gm)g2(γe

gm)
.
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Asymptotic optimality

Gaussian sequence x1, x2, . . . with the dispersion σ2 = 1 and the

trend h(t), t ≥ 0 in the mathematical expectation of observations.

CUSUM and RSh

γe∫

0

h2(t)

2
dt ≥ δ∗ = 2|a|.

γc∫
0

(h(t) − |a|) dt = 1.

Asymptotical optimality only for abrupt changes:

h(t) ≡ const = 2|a|.
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”Window limited” method:

h(1) > C, δ∗(·) = C2/2, σ2 = 1:

γe∫

0

h2(t)

2
≥ C2

2
.

For ”window limited” methods:

γ∫
0

h(t)g(t)dt = C,

where
1∫
0
g2(t)dt = 1, 0 < γ ≤ 1.

Asymptotically optimal method:

g(t) = h(t)/C, C = (

∫ 1

0
h2(t)dt)1/2.
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Multivariate models

Multivariate regression

Y (n) = Π(n)X(n) + νn, n = 1, 2, . . . ,

The M ×K matrix Π changes abruptly at some unknown change-

point m, i.e.

Π(n) = aI(n ≤ m) + b(n)I(n > m), n = N,N + 1, . . .

where ‖a− b(n)‖ > 0.

This model generalizes many widely used regression models, i.e.

- static and dynamic regression models with multiple predictors

- ARMA (autoregression and moving average) models for time

series

- systems of simultaneous regression equations in econometrics

- stochastic dynamical systems with fully observed state variables

in control theory.
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Assumptions

Suppose that predictors X(n) and noises νn are continuously dis-

tributed and strictly stationary and the following conditions are sat-

isfied:

1) the vector X(n) = (x1n, . . . , xKn)
′
is Fn−1 measurable.

2) there exists a continuous matrix function V (t), t ∈ [0, 1] such that

for any 0 ≤ t1 ≤ t2 ≤ 1

1

N

[t2N ]∑
j=[t1N ]

X(j)X
′
(j) →

t2∫
t1

V (t)dt, P − a.s. as N → ∞,

where
t2∫
t1

V (t)dt is the positive definite matrix;

3) the random vector sequence {(X(n), νn)} satisfies ψ-mixing and

the unified Cramer condition.

4) {νn} is a martingale-difference sequence w.r.t. the flow {Fn}.
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Method

For any n = N,N + 1, . . . consider N last vectors of observations

Y (i), X(i), i = n−N + 1, . . . , n.

First, consider the K ×K matrices:

T n(1, l) =

l∑
i=1

X(i+ n−N)X
′
(i+ n−N), l = 1, . . . , N,

second, the K ×M matrices:

zn(1, l) =
l∑

i=1

X(i+ n−N)Y
′
(i+ n−N), l = 1, . . . , N,

and third, the decision statistic

Y n
N(l) =

1

N
(zn(1, l)− T n(1, l)(T n(1, N))−1 zn(1, N)).

where l = 1, . . . , N, Y n
N(N) = 0 and by definition, Y n

N(0) = 0.

Fix the number 0 < β < 1/2. For detection of the change-point

m > N , we define the stopping time

τN = inf{n : max
[βN ]≤l≤N

‖Y n
N(l)‖ > C}

where C is a certain decision threshold, ‖A‖ is the Gilbert norm of

the matrix A.
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Theorem

Suppose assumptions 1)-2) are satisfied. Then

1) for the 1st type error:

P0{max
n

‖ZN(n)‖ > C} ≤ m0(C1)

⎧⎪⎪⎨
⎪⎪⎩

exp(− TNβC1

4m0(C1)
), C1 > hT

exp(− NβC2
1

4hm0(C1)
), C1 ≤ hT,

where C1 = C/(1 +
√
K).

2) for the 2nd type error, define:

S(θ) =
1−θ∫
0
V (τ)dτ · I−1 ·

1∫
1−θ

V (τ)(b(τ) − a)dτ

g(θ̃) = max
θ

g(θ), g(θ) = ‖S(θ)‖2,

d = (g(θ̃) − C)/(1 +
√
K).

Then

δN ≤ m0(d)

⎧⎪⎪⎨
⎪⎪⎩

exp(− TNβd

4m0(d)
), d > hT

exp(− Nβd2

4hm0(d)
), d ≤ hT.

3) normed delay time:

γN =
(τN −m)+

N
→ γ∗, Pm − a.s. as N → ∞,

where γ∗ is the minimal root of the equation g(t) = C.

The proposed method is asymptotically optimal by the order of the per-

formance measures (w.r.t. N → ∞).
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State-space models

Model

For 0 ≤ n ≤ m:

Y (n+ 1) = HX(n+ 1) + ξ(n+ 1)

X(n+ 1) = φ(X(n)) + η(n+ 1)

and for n > m:

Y (n+ 1) = D(n)X(n+ 1) + ξ(n+ 1)

X(n+ 1) = Λn(X(n)) + η(n+ 1),

where ‖D(n) −H‖ > 0, sup
X

‖Λn(X) − φ(X)‖ > 0.
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Stability assumptions

Let Λn(X) = Qn(x)φ(X). Then suppose that

1

N

[Nt]∑
i=1

φ(X(i))φ
′
(X(i)) →

t∫
0

V (τ)dτ, P − a.s. as N → ∞

1

N

[Nt]∑
i=1

φ(X(i))φ
′
(X(i))Q

′
i(X(i)) →

t∫
0

U(τ)dτ, P − a.s. as N → ∞

Let I =
1∫
0
V (τ)dτ . Define

S(θ) =

1−θ∫
0

V (τ)dτ · I−1 ·
1∫

1−θ

(V (τ)H
′ − U(τ)D

′
(τ)) dτ,
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Theorem

Suppose Cramer’s and ψ-mixing conditions are satisfied. Then

1) for the 1st type error:

P0{max
n

‖ZN(n)‖ > C} ≤ m0(C1)

⎧⎪⎪⎨
⎪⎪⎩

exp(− TNβC1

4m0(C1)
), C1 > hT

exp(− NβC2
1

4hm0(C1)
), C1 ≤ hT,

where C1 = C/(1 +
√
K);

2) for the 2nd type error: define

q = max
i,j,u

Eaij(u), a(u) = Ω(u)X
′
(u)

g(θ) = ‖S(θ)‖2, g(θ̃) = max
θ

g(θ), d = (g(θ̃) − C − q))/(1 +
√
K).

Then

Pm{max
n

‖ZN(n)‖ ≤ C} ≤ m0(d)

⎧⎪⎪⎨
⎪⎪⎩

exp(− TNβd

4m0(d)
), d > hT

exp(− Nβd2

4hm0(d)
), d ≤ hT,

3) for the normalized delay time

γN → γ∗, P − a.s. as N → ∞,

where γ∗ is the minimal root of the equation g(t) = C + q.

The proposed method is asymptotically optimal by the order of the per-

formance measures (w.r.t. N → ∞).
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Experiments

Univariate models

ET 
 577 for all methods:

1) CUSUM: yn = (yn−1 + xn)
+; a = −0.5 and the threshold of detec-

tion was equal to 4.5;

2) RSh: yn = (1 + yn−1) exp(xn); a = −0.5 and the threshold of detec-

tion was equal to 330;

3) Exp: yn = (1−ν)yn−1+νxn; ν = 0.02 and the threshold of detection

was equal to 0.255.

4) WL: yn = N−1
N−1∑
i=0

g(i/N) x(n− i); N = 100; C = 0.255,

g(i/N) =
H

T

i

N
.

The length of the “transition period” was equal to T = 3000 and

the value H for the linear trend model was changed in the interval 0.1

- 1000. In 5000 independent trials of each experiment the average

delay time in detection Eτ and the value στ were computed. The

results are reported in Table 1.
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Table 1.

Hmax 0.1 0.5 1 2 5 10

RSh Eτ 527.2 390.3 314.0 232.3 145.8 99.4

στ 447.7 284.6 204.6 135.7 72.3 43.9

CUSUM Eτ 517.2 388.9 316.8 235.9 150.3 103.3

στ 457.1 281.0 223.7 143.6 79.6 46.4

Exp Eτ 489.9 342.4 266.6 197.4 127.4 88.8

στ 407.6 237.2 167.5 113.5 62.4 38.1

WL Eτ 485.2 369.8 240.8 188.5 118.5 95.3

στ 499.5 343.3 229.8 150.1 81.5 44.6

Hmax 50 100 200 500 1000

RSh Eτ 37.9 24.5 16.3 9.6 6.6

στ 12.2 7.0 3.8 1.9 1.2

CUSUM Eτ 39.3 24.9 16.4 9.3 6.3

στ 12.7 7.4 4.1 2.0 1.2

Exp Eτ 35.2 23.6 16.2 9.7 6.7

στ 10.8 6.6 3.8 1.9 1.1

WL Eτ 34.5 25.6 17.0 10.7 6.8

στ 15.2 7.4 4.5 2.1 1.8
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Multivariate models

Multivariate regression

The following system of simultaneous equations was considered:

yi = c0 + c1yi−1 + c2zi−1 + c3xi + εi

zi = d0 + d1yi + d2xi + ξi

xi = 0.5xi−1 + νi

εi = 0.3εi−1 + ηi,

where ξi, νi, ηi, i = 1, 2, . . . are independent N (0, 1) r.v.’s.

So (yi, zi)
′
is the vector of endogenous variables, xi is the exogenous

variable, and (1, yi−1, zi−1, xi)
′
is the vector of predetermined variables

of this system.

The dynamics of this system is characterized by the following vec-

tor of coefficients: u = [c0 c1 c2 c3 d0 d1 d2]. The initial stationary

dynamics is characterized by the coefficients [0.1 0.5 0.3 0.7 0.2 0.4 0.6].
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Table 2. Decision bounds of the nonparametric test (SSE model)

N 20 50 100 200 300 400

p = 0.95 0.99 0.67 0.49 0.39 0.30 0.25

p = 0.99 1.50 0.85 0.65 0.47 0.38 0.32

th 1.45 0.91 0.65 0.46 0.37 0.32

In the following series of experiments the models with changes in

the coefficient d2 were considered. For each sample volume N and the

chosen values of the decision threshold th, the estimates of the 1st

(’false alarm’) and the 2nd type error probabilities were computed,

as well as the average delay time in change-point detection in k = 5000

independent trials. The results are reported in Table 3.

23



Table 3. Performance characteristics of the nonparametric test

(SSE model, 5000 replications, pr - empirical false alarm rate, w2 -

type 2 error, Eτ - average delay time)

abrupt N 20 50 100 200

th 1.50 0.85 0.65 0.47

pr 0.02 0.03 0.02 0.03

d2 = 0.95 w2 0.09 0 0 0

Eτ 3.80 1.71 1.21 1.01

d2 = 0.9 w2 0.19 0.02 0 0

Eτ 4.83 2.46 1.04 1.10

d2 = 0.8 w2 0.45 0.15 0.04 0

Eτ 6.52 9.20 13.2 11.2

gradual (ḋ2 = ∆d) N = 100

th 0.65

pr 0.02

∆d = 10−4 w2 0.23

Eτ 97.4

∆d = 10−3 w2 0.02

Eτ 27.8

∆d = 10−2 w2 0

Eτ 5.6

24



State-space models

Lai’s example: changes in means

Now let us consider the following example of the multivariate state

space model:

xt+1 = Fxt + (θ, 0)
′
I{t≥r} + wt

yt = (1, 0)xt + εt,

where F =

⎛
⎝ 0.7 0.1

0 0.7

⎞
⎠ and wt, εt are independent Gaussian with zero

means, V ar(εt) = 1, Cov(wt) =

⎛
⎝ 0.745 −0.07

−0.07 0.51

⎞
⎠ and θ is an unknown

scalar parameter representing the change magnitude.

This example was considered in Lai and Shan (1999). The thresh-

old c of the GLR rule was chosen in order to obtain the average time

between false alarms equal to 500. Each result in this table is based

on 1000 independent trials.
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Table 4. Comparison of GLR and nonparametric test

θ GLR rule; c = 5.35 Nonparametric test; N = 30, c = 0.52

0 509 507

1.5 3.28 4.23

1.2 3.88 5.07

1.0 4.48 7.13

0.9 4.89 9.19

0.8 5.41 11.41

0.7 6.25 15.74

0.6 7.65 18.70

0.5 9.79 23.73

0.4 13.13 31.65

0.3 21.41 46.56

0.2 44.06 72.22

0.1 144 153.28

26



Non-Gaussian distributions; changes in coefficients

The baseline model is of the following functional form

xt+1 = Fxt + wt

yt = (1, 0)xt + εt,

where F =

⎛
⎝ 0.7 0.1

0 0.7

⎞
⎠ but wt has the multivariate t-distribution with

the correlation matrix σ =

⎛
⎝ 1.0 0.8

0.8 1.0

⎞
⎠ and three degrees of freedom;

εt has the standard uniform d.f. on the segment [0; 1].

At an unknown change-point m the matrix F changes to G =⎛
⎝ θ 0.1

0 0.7

⎞
⎠, where θ �= 0.7.

Table 5. Changes in coefficients of state-space models; non-

Gaussian distributions (N = 30, c = 2.02, θn = θn−1 + ∆θ, θ0 = 0.7)

abrupt θ 0.7 0.8 0.9 1.0 1.1 1.2

ET 507 378.72 104.61 29.52 16.66 11.30

gradual ∆θ 10−5 10−4 10−3 10−2 10−1 0.5

ET 409.4 325.9 142.0 32.6 9.4 4.5
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Non-linear state-space model

Consider the following state-space model:

yi = d1 + d2xi + d3x
2
i + ηi

xi =
d4

d5 + d6e−xi−1
+ ξi,

where xi, yi, i = 1, 2, . . . is the state variable and the observed variable,

respectively; ηi, ξi are independent Gaussian random sequences N(0, 1)

and the baseline model is characterized by the following parameters:

d1 = 1, d2 = 0.3, d3 = 0.1, d4 = 1, d5 = 1, d6 = 1.

We consider possible changes in coefficients of this model at an

unknown change-point m. In experiments we estimate the false

alarm probability (1st type error) pr1, the probability of the 2nd

type error w2, and the average delay time in change-point detection

sN = E(τN − m|τN > m). Each value was computed as an average in

5000 independent Monte Carlo trials.
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Table 6. Non-linear state-space model

abrupt N 100 200 300 500 700

C 0.33 0.23 0.21 0.19 0.17

pr1 0.04 0.05 0.04 0.04 0.04

d2 = 0.8 w2 0.44 0.11 0.07 0.05 0

sN 42.2 58.9 79.1 96.8 116.1

d4 = 1.3 w2 0.20 0.12 0.08 0.05 0

d5 = 0.5 sN 59.6 79.4 91.0 115.7 124.2

d3 = 0.4 w2 0.11 0.02 0.03 0.02 0

sN 84.2 80.3 91.9 117.7 123.3

gradual ḋ2 = ∆d N = 300

th 0.21

pr 0.04

∆d = 10−4 w2 0.04

sN 56.2

∆d = 10−3 w2 0

sN 28.8

∆d = 10−2 w2 0

sN 6.3
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Conclusion

1. The a priori informational inequalities for the main performance

measures in sequential detection of abrupt and gradual changes for

univariate and multivatiate stochastic models are proved.

2. It is usually assumed that statistical characteristics of observa-

tions change instantaneously from one stationary level into another

at some unknown points. The optimality and asymptotic optimal-

ity of CUSUM, GRSh and “window-limited” tests was established

only under these assumptions. However, in many practically rele-

vant situations of gradual changes in statistical characteristics of data

the asymptotic optimality of CUSUM, GRSh and other well-known

tests may be violated. In this paper we demonstrate that CUSUM

and GRSh tests will be asymptotically optimal in the problem of

“early detection” only in the classic situation of an abrupt change

from one known density function f0(·) to another (a priori known)

density function f1(·).

3. The asymptotically optimal methods of early change-point de-

tection in univariate and multivariate stochastic models are proposed.

4. The Monte Carlo tests are performed for the proposed methods

of early change-point detection in univariate and multivariate models.
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Thank you for attention
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